Interview of the Month

Improving Sensitivity and Sample Introduction Efficiency in ICP-OES and ICP-MS

Although inductively coupled plasma-optical emission spectrometry (ICP-OES) and ICP-mass spectrometry (MS) are generally considered to be mature techniques, researchers continue to investigate the fundamentals of the techniques and improve their capabilities. Diane Beauchemin, a professor at Queens University in Kingston, Ontario, is engaged in that challenge. She recently spoke to Spectroscopy about methods she has developed for simultaneous speciation and her work to improve sample introduction efficiency, to improve sensitivity and detection limits.

Quantum Mechanics

This series of installments from David Ball’s excellent “Baseline” column discusses the relevance of quantum mechanics for spectroscopy and why it is important for spectroscopists to know the basics.

Read more.

Infrared (IR)

The Carbonyl Group, Part I: Introduction

By Brian C. Smith

An introduction to the IR spectroscopy of the carbonyl group, exploring why the peak is intense and showing how to apply that knowledge to the analysis of the spectra of ketones

Detecting Blood on Fabrics: Infrared Diffuse Reflectance Versus Attenuated Total Reflectance FT-IR

By Spectroscopy Editors

In forensic science, the detection of blood on fabric is a very useful tool. Therefore, it is important that the methods used for detecting blood be as accurate as possible. Michael L. Myrick and Stephen L. Morgan, both professors in the Department of Chemistry and Biochemistry at the University of South Carolina, have been investigating the use of infrared (IR) spectroscopy for this purpose, including comparing the effectiveness of infrared diffuse reflectance versus attenuated total reflectance Fourier-transform IR (ATR FT-IR). They recently spoke to Spectroscopy about their recent studies and the critical questions they have been addressing in how IR spectroscopy is used in forensic science.

Solving Polymer Problems Using IR Spectroscopy

By Spectroscopy Editors

Naoto Nagai focuses on solving problems for industry. In this interview, he explains his research to determine the cause of resin cracks in polyoxymethylene mold plates using IR spectroscopy.

Tracking Microplastics in the Environment via FT-IR Microscopy

By Michael Bradley, Suja Sukumaran, Steven Lowry, Stephan Woods

Microplastics from clothing, abrasive action on plastics, or engineered microbeads as found in some exfoliating cosmetics are showing up in many environmental systems. FT-IR microscopy is a useful tool in the analysis of microplastics, providing visual information, particle counts, and particle identification.

Miniaturized MIR and NIR Sensors for Medicinal Plant Quality Control

By Christian W. Huck

This work shows that methods based on miniaturized near- and mid-infrared spectroscopy can be used effectively for the quality control of herbal medicines.


Advancing Forensic Analyses with Raman Spectroscopy

By Spectroscopy Editors

Igor K. Lednev, of the Department of Chemistry at the University at Albany, the StateUniversity of New York, has been developing the use of Raman spectroscopy for a varietyof forensic applications, including determining the age of blood stains and linking gunshot residues to specific ammunition–firearm combinations.

Detecting Pathogenic Mycoplasmas with Surface-Enhanced Raman Spectroscopy

By Spectroscopy Editors

Duncan C. Krause, of the Department of Microbiology at the University of Georgia, discusses his group’s work to establish a SERS method with silver nanorod-array substrates for detecting the pathenogenic mycoplasma that causes bronchitis and pneumonia.

Understanding Emerging Biopolymers with 2D Raman Correlation Spectroscopy

By Spectroscopy Editors

Two-dimensional (2D) Raman correlation spectroscopy is a powerful analytical technique for analyzing a system under the influence of an external perturbation. Isao Noda, of the Department of Materials Science and Engineering, at the University of Delaware and Danimer Scientific, has been developing 2D Raman correlation spectroscopy and applying it to the study of various materials, including exciting new biopolymers. He recently spoke to us about this work.

Raman Microscopy Combined with Tensile Deformation for Understanding Changes in Polymer Morphology

By Fran Adar

We show Raman spectra of polymeric fibers acquired as a function of increasing stress and temperature. With knowledge of Raman band assignments, it becomes possible to understand, in detail, the molecular changes that are responsible for polymer orientation and crystallization.

In Situ Raman Spectroscopy Monitoring of the Reaction of Sulfur Trioxide with Polyethylene Fibers in Chlorinated Solvents

By Xiaoyun Chen, Jasson Patton, Bryan Barton, Jui-Ching Lin, Michael Behr, Zenon Lysenko

The apparent reaction kinetics between SO3 and polyethylene are investigated in various halogenated solvents using in situ Raman spectroscopy with an immersion Raman probe, demonstrating the power of in situ Raman spectroscopy to monitor hazardous reactions.


Overview of High-Efficiency Transmission Gratings for Molecular Spectroscopy

By Spectroscopy Editors

This article provides a basic overview of the capabilities of transmission gratings optimized for molecular spectroscopy.

Scattering Impact Analysis and Correction for Leaf Biochemical Parameter Estimation Using Vis–NIR Spectroscopy

By Spectroscopy Editors

Simulated leaf spectral data were generated to analyze scattering impact and then compared to experimental data to validate the conclusions of the simulation.

An Integration of Modified Uninformative Variable Elimination and Wavelet Packet Transform for Variable Selection

By Spectroscopy Editors

The wavelet packet transform (WPT) combined with the modified uninformative variable elimination (MUVE) method (WPT–MUVE) is proposed to select variables for multivariate calibration of spectral data.

Peer-Reviewed Articles

Verification of Pharmaceutical Raw Materials Using FT-NIR Spectroscopy

By Ian Robertson, Jerry Sellors

FT-NIR spectroscopy can be used to overcome a range of challenges in raw material identification while also meeting the stringent requirements of regulated environments.

Morphologically Directed Raman Spectroscopic Analysis of Forensic Samples

By Brooke W. Kammrath, Andrew Koutrakos, Pauline E. Leary, Josemar Castillo, Joe Wolfgang, Deborah Huck-Jones

Can morphologically directed Raman spectroscopy obtain more discriminatory information from forensic samples than current tools?

The 2018 Emerging Leader in Atomic Spectroscopy Award

By Megan L’Heureux

John M. Cottle, the winner of Spectroscopy’s 2018 Emerging Leader in Atomic Spectroscopy Award, is a leader in the development of novel laser-ablation inductively coupled plasma–mass spectrometry measurements and their application to tectonic questions in convergent orogens. His three breakthrough measurement methods using LA-ICP-MS for geochemical data collection are breaking new ground in Earth science.

Testing Electronic Device Components for RoHS/WEEE Compliance Using Microwave Digestion and ICP-OES

By K. Neubauer

The combination of microwave sample preparation and ICP-OES is examined to meet the challenges of measuring a suite of heavy metals in a wide range of electronic components for RoHS/WEEE compliance.


The Benefits of Spectroscopic Hyperspectral Chemical Imaging for Pharmaceutical Analysis Highlighted at Local SAS Meeting

The February meeting of the New York-New Jersey Chapter of the Society for Applied Spectroscopy (NYSAS) was held on February 20 at Fairleigh Dickinson University, organized in collaboration with the Department of Chemistry and Pharmaceutical Science, Student Affiliates of the American Chemical Society, and the Gamma Sigma Epsilon Chemistry Honor Society.

LIBS Used to Compare Commercial Milk Products

A team of researchers at Mississippi State University has used laser-induced breakdown spectroscopy (LIBS) to compare a variety of commercial milk products.

John Cottle Joins Spectroscopy's Editorial Advisory Board

Spectroscopy Magazine is pleased to announce the addition of John Cottle to its editorial advisory board.

SpecTube – Supplier Videos


New Atomic Spectroscopy–Based Approaches in Geochronology: An Interview with the 2018 Emerging Leader in Atomic Spectroscopy

By Spectroscopy Editors

Geochronology is an exciting area of atomic spectroscopy and earth science research. One of the goals is to answer tectonic questions, and in particular, how the crust responds to continent–continent collision. John M. Cottle, a professor of earth science at the University of California, Santa Barbara, is one of the scientists on that mission. Cottle and his research group are at the forefront of discovery in geochronology, combining both laboratory and field-based research. In particular, Cottle is a leader in the development of novel laser-ablation inductively coupled plasma–mass spectrometry (LA-ICP-MS) measurements and their application to tectonic questions in convergent orogens, which are mountain ranges formed when a continental plate crumples and is pushed upwards.

Effective Removal of Isobaric Interferences on Strontium and Lead Using Triple-Quadrupole ICP-MS

By Daniel Kutscher, Simon Lofthouse, Simon Nelms, Shona McSheehy Ducos

Unresolved interferences can lead to biased results in ICP-MS analyses. Here we describe an approach for removing those interferences using reactive gases.

Our Daily Dose of Poison: A Look at Lead in the Food Supply

By Patricia Atkins

How much lead is in our daily lives? We take a look at current research concerning lead in the United States food supply and investigations using ICP-MS into the measurement of high concentrations of lead in food.

Mass Spectrometry

Mass Spectrometry Techniques to Unravel the Heterogeneity of Glycoproteins

By Asif Shajaha, Parastoo Azadi

Since glycans are responsible for bioactivity, solubility, immunogenicity, and clearance rate from circulation, it is vital to have a detailed map of glycans in therapeutic glycoproteins. Detailed glycoprotein structural analysis must be able to identify the peptide sequence where the glycans are attached as well as the structure of the glycan portion, including oligosaccharide sequence and glycosyl linkages. This article details methods for mass spectrometry experiments on both released glycans (“glycomics”), as well as on intact glycopeptides (“glycoproteomics”) using electron transfer dissociation, high-energy collision dissociation, and collision-induced dissociation fragmentation pathways, which are needed to fully elucidate the structure of glycoproteins.

Gas Chromatography–Mass Spectrometry Characterization of Vegetable Oil–Derived Potent Antimicrobial Agents

By Racha Seemamahannop, Prakash Wadhawa, Shubhen Kapila, Abha Malhotra

Under a suitable thermal oxidation regime, vegetable oils yield a mixture of volatile and semivolatile organics that exhibit very high antimicrobial activities against a variety of microbial species. Volatile and semivolatile products were characterized with GC–MS using electron ionization and chemical ionization. The thermal oxidation of vegetable oils resulted in the formation of an array of short and medium-chain acids, aldehydes, and ketones that act synergistically to yield a potent antimicrobial disinfectant.

Review of the 65th Conference on Mass Spectrometry and Allied Topics

By Cindy Delonas

We present a brief review of this year’s ASMS conference, which took place June 4–8 in Indianapolis, Indiana.

lorem ipsum