Miniature Spectrometers for Narrowband Laser Characterization - - Spectroscopy
 Home   Mass Spectrometry   ICP-MS   Infrared   FT-IR   UV-Vis   Raman   NMR   X-Ray   Fluorescence  
Issue Archive
Special Issues
The Application Notebook
Current Issue
Submission Guidelines
Digital Edition
Subscribe to the Digital Edition
The Wavelength
Subcribe to The Wavelength
Subscribe to the MS E-news
Market Profiles
Information for Authors
Advertiser services
Contact Us
Atomic Perspectives
Chemometrics in Spectroscopy
Focus on Quality
Laser and Optics Interface
Mass Spectrometry Forum
The Baseline
Molecular Spectroscopy Workbench

Miniature Spectrometers for Narrowband Laser Characterization

Application Notebook
pp. 19

Used everywhere from bar code scanners to sophisticated single-molecule microscopes, lasers are powerful and cost-effective light sources for applications spanning basic research to consumer entertainment. Characterization of wavelength and power is an important part of working with these sources, and compact, plug-and-play spectrometers are an excellent tool to do so.

Miniature spectrometers can be used to characterize laser output, either as part of an internal laser feedback loop or externally. Ocean Optics modular spectrometers can be configured for sub-nanometer optical resolution (FWHM) performance in the UV-vis (200–1100 nm) and high resolution in the NIR (800–2500 nm), with fast response times and triggering functions for synchronizing laser events to spectral acquisition.

Combined Wavelength and Power Monitoring

Laser diodes are prone to wavelength and power output fluctuations due to temperature variations, often requiring feedback loops and stabilization. The Ocean Optics STS microspectrometer is a compact monitoring solution that fits easily into a laser system or sub-assembly. When equipped with a 10 m slit, the STS is capable of resolving laser output with resolution close to 1.0 nm (FWHM), and can accommodate both fiber and free-space coupling.

Figure 1: The small-footprint, high performance STS microspectrometer is an excellent option for integration into a laser source sub-assembly.
In the example spectra (Figure 1), a collimated 532 nm laser diode was characterized using a radiometrically calibrated STS-VIS (~1.5 nm FWHM resolution). The laser beam was transmitted through a beamsplitter and the reflected beam (approximately 30%) was collected by an integrating sphere; the STS-VIS measured the laser's absolute spectral radiant flux and integrated power.

By integrating the spectral radiant flux over the region from 500–560 nm, and by using the Energy, Power and Photons feature in OceanView spectroscopy software, we calculated a total integrated laser power of 521 W.

High Resolution Spectral Measurement

When more than just a center wavelength is needed, a high resolution spectrometer may be appropriate. Our HR spectrometers are offered with a variety of gratings and with two high-density CCD array detectors, allowing you to custom-configure a system for your specific wavelength range. This allows a single spectrometer to measure multiple characteristics of the laser including peak location, FWHM, integrated area under the peak and other parameters.

Monitoring Near-IR lasers

Laser applications are moving increasingly into the NIR, including pharmaceutical development, stand-off explosives detection, and other defense and security applications.

To demonstrate the capability of Ocean Optics spectrometers for the characterization of NIR lasers, we measured the output of a wavelength-stabilized 1064 nm laser using a NIRQuest spectrometer. Configured with a 10 m slit and a 600 line/mm grating, this custom configuration delivered 0.25–0.46 nm resolution (FWHM) over the range of 975–1125 nm.


Newer lasers such as tunable Ti:sapphire lasers, OPOs and supercontinuum lasers also require ongoing spectral characterization, which is where miniature spectrometers can provide a convenient, modular option. Whether measuring center wavelength, spectral shape or power, compact spectrometers are a convenient, low-cost tool for the characterization and monitoring of many types of laser sources.

Ocean Optics
830 Douglas Avenue, Dunedin, FL 34698
tel. (727) 733-2447, fax (727) 733-3962

Rate This Article
Your original vote has been tallied and is included in the ratings results.
View our top pages
Average rating for this page is: 0
Headlines from LCGC North America and Chromatography Online
Emerging Trends in Pharmaceutical Analysis
Streamline Data Analysis of Tandem Mass Spectrometry for Inborn Errors of Metabolism Research
Extraction of GHB from Urine Using ISOLUTE® SLE+ Prior to GC/MS
Pittcon 2015 Announces Award Recipients for Outstanding Achievements in Analytical Chemistry and Applied Spectroscopy
Method Development of Mixed-Mode Solid Phase Extraction for Forensics Appliations
Source: Application Notebook,
Click here