An Integrated Risk Assessment for Analytical Instruments and Computerized Laboratory Systems - - Spectroscopy
 Home   Mass Spectrometry   ICP-MS   Infrared   FT-IR   UV-Vis   Raman   NMR   X-Ray   Fluorescence  
Home
Magazine
Issue Archive
Subscribe/Renew
Special Issues
Reprints
The Application Notebook
Current Issue
Archive
Submission Guidelines
Training
SpecAcademy
E-solutions
Digital Edition
Subscribe to the Digital Edition
The Wavelength
Subcribe to The Wavelength
Subscribe to the MS E-news
Resources
Market Profiles
Information for Authors
SpecTube
Webcasts
Advertiser services
Contact Us
Columns
Atomic Perspectives
Chemometrics in Spectroscopy
Focus on Quality
Laser and Optics Interface
Mass Spectrometry Forum
The Baseline
Molecular Spectroscopy Workbench

An Integrated Risk Assessment for Analytical Instruments and Computerized Laboratory Systems


Spectroscopy
Volume 28, Issue 11, pp. 20-27

A risk assessment is presented for determining the amount of qualification and validation work required to show that instruments and computerized laboratory systems are fit for their intended purpose.

Risk management is one of the new requirements for the pharmaceutical industry following the publication of the Food and Drug Administration's (FDA) "Good Manufacturing Practices (GMPs) for the 21st Century" (1) and the International Conference on Harmonization (ICH) Q9 on Quality Risk Management (2). How much qualification and validation work is required in connection with a regulated task is dependent on a justified and documented risk assessment. The United States Pharmacopeia (USP) General Chapter <1058> (3) on analytical instrument qualification (AIQ) has an implicit risk assessment in that it classifies instrumentation used in a regulated laboratory into one of three groups: A, B, or C. The chapter defines the criteria for each group, but leaves it to individuals to decide how to operate the classification in their own laboratories.

Software is pervasive throughout the instruments and systems in groups B and C, as acknowledged by <1058> (3). From a software perspective, Good Automated Manufacturing Practice (GAMP) 5 Good Practice Guide (GPG) for Validation of Laboratory Computerized Systems (4) is widely recognized within the industry and by regulators, but it is not consistent with some of the elements of USP <1058>. The USP general chapter is currently under revision and ideally the revised version will be fully compatibility with the GAMP 5 guidelines and good practice guides (4–6). In the meantime, however, users are left with a question: Do I follow USP <1058> or GAMP 5? We shall answer this question here.

Some Problems with USP <1058>

In November 2010, there was an American Association of Pharmaceutical Scientists (AAPS) meeting in New Orleans, Louisiana, where the status of <1058> was debated. That same month Bob published some of his thoughts about the advantages and disadvantages of that general chapter (7). The advantages consisted of the classification of instruments and systems, which was also its greatest disadvantage, as it was too simplistic. Simply saying that an instrument fit into group B ignored the possibility that there were in-built calculations that needed to be verified because of 21 CFR 211.68(b) requirements (8) or that some instruments enable users to build their own programs. Furthermore, the approach to software for group C systems was na´ve as it placed the responsibility for validation on the supplier rather than the user. Chapter <1058> also referenced the FDA guidance for industry entitled General Principles of Software Validation (9), which was written primarily for medical devices; the configuration and customization of software is not mentioned there.

GAMP Good Practice Guide for Laboratory Systems Updated

The publication of the first edition of the GAMP Good Practice Guide for Validation of Laboratory Computerized Systems (5) had some problems. However, in the recently published second edition (6), the good practice guide was aligned with GAMP 5 (4) and was updated to be risk-based (as reflected in the new title). Collaboration with us during the writing enabled both the good practice guide and the new draft of USP <1058> (11) to be more closely aligned and have a unified approach to qualification and validation of instruments and computerized laboratory systems. (The GAMP GPG uses the term laboratory computerized system in contrast to the more common term of computerized laboratory system; however the two terms are equivalent.) We have a paper soon to be published that maps the two approaches and shows that they are very similar despite some differences in terminology (12).

Progress Updating USP <1058>

The original basis of USP <1058> was the 2004 AAPS white paper "Analytical Instrument Qualification," which focused on a risk-based approach to AIQ by classifying apparatus, instruments, and systems depending on the laboratory's intended use. The definition of the intended use is the key part of the process, because the same item could be classified in any of the three groups depending on its use. Intended use is also an essential part of our risk assessment presented in this column.

However, the current weakness of the overall risk-based approach is the way in which software is assessed. Software is pervasive in group B instruments and group C systems. Chapter <1058> currently references the FDA guidance document, General Principles of Software Validation (9). This guidance was written primarily for medical device software, which is neither configured (modified to the business process by vendor supplied tools) nor customized (writing software macros or modules that are integrated with the application). Given that many analytical instruments and systems are configured or customized, this guidance does not fit well in a regulated GxP laboratory environment.

In January 2012, we published a stimulus to the revision process in the on-line version of Pharmacopeial Forum (13), in which we proposed an update for USP <1058>. In our proposal, instrument qualification was integrated with computerized system validation rather than being two separate activities. This would provide regulated laboratories with the opportunity to reduce the amount of work and avoid potential duplication. In this publication, we included a risk-assessment flow chart for determining the amount of work to perform to qualify analytical instruments and, where appropriate, validate the software functions and applications. From the comments received, we updated the flow chart. We present it here as a simplified method for classifying the apparatus, instruments, and systems in your laboratory.


Rate This Article
Your original vote has been tallied and is included in the ratings results.
View our top pages
Average rating for this page is: 5
Headlines from LCGC North America and Chromatography Online
The LCGC Blog: Chromatography Technical Tips - Polar Analyte Retention and Phase Collapse
How much sample can I inject?
Your Chromatography Update from LCGC Europe
Agilent NA - Method Development for Enantiomers
Teledyne NA - Determination of Pesticide Residues in Honey
Source: Spectroscopy,
Click here