Analyzing Synthetic Cathinones Using Direct Sample Analysis Time-of-Flight Mass Spectrometry - - Spectroscopy
 Home   Mass Spectrometry   ICP-MS   Infrared   FT-IR   UV-Vis   Raman   NMR   X-Ray   Fluorescence  
Home
Magazine
Issue Archive
Subscribe/Renew
Special Issues
Reprints
The Application Notebook
Current Issue
Archive
Submission Guidelines
Training
SpecAcademy
E-solutions
Digital Edition
Subscribe to the Digital Edition
The Wavelength
Subcribe to The Wavelength
Subscribe to the MS E-news
Resources
Market Profiles
Information for Authors
SpecTube
Webcasts
Advertiser services
Contact Us
Columns
Atomic Perspectives
Chemometrics in Spectroscopy
Focus on Quality
Laser and Optics Interface
Mass Spectrometry Forum
The Baseline
Molecular Spectroscopy Workbench

Analyzing Synthetic Cathinones Using Direct Sample Analysis Time-of-Flight Mass Spectrometry


Special Issues
pp. s8-s15

Direct sample analysis coupled to high-resolution time-of-flight mass spectrometry (TOF-MS) may be effective at analyzing synthetic cathinones, especially for qualitative analysis, because it does not require potentially tedious sample preparation. This technique will allow for a more rapid and simplistic analysis of synthetic drugs and increase laboratory throughput, as evidenced by the work of other researchers with different instrumentation for different compound classes.

Synthetic drugs known as "bath salts," "plant food," and "jewelry cleaner" have become prominent in the United States since their introduction in 2009 (1). Products exhibit colorful packaging labels that state "not for human consumption" to allow for legal possession and recreational use by circumventing control mechanisms (2). These drugs are sold extensively via online retailers and are also carried in "head shops" and independently owned convenience stores (3). The products generally contain cathinone derivatives and produce stimulant effects similar to methamphetamine and ecstasy (4). Cathinone is a schedule I drug under the Controlled Substances Act (CSA), but it has been modified to produce a wide variety of synthetic drugs. There are dozens of known cathinone derivatives on the market and hundreds more that are possible (5). In June of 2012 the United States Congress passed the Food and Drug Administration (FDA) Safety and Innovation Act that extended the CSA to include 3,4-methylenedioxypyrovalerone (MDPV) and 4-methylmethcathinone (mephedrone) as schedule I drugs (6).

Synthetic cathinones are sold as tablets, capsules, and powders and have been combined with other illicit controlled substances in previous cases (7). The abuse of these drugs has also led to deaths globally (8,9).

These products can be difficult to analyze because of the possible insolubility of adulterants, cutting agents, or other added materials. Generally, analysis requires some type of sample preparation to obtain the active compounds in a suitable form, such as an organic solvent solution. Direct sample analysis time-of-flight mass spectrometry (TOF-MS) may be effective, especially for qualitative analysis, because it does not require potentially tedious sample preparation. This technique allows for a more rapid and simplistic analysis of synthetic drugs and increases laboratory throughput, as evidenced by the work of other researchers with different instrumentation for different compound classes (10,11). Analysis of such designer drugs and the identification of individual compounds may help reduce their production and abuse.

Materials and Methods

Chemicals and Materials

Standard reference materials consisting of 3,4-methylenedioxypyrovalerone (MDPV), 4-methylmethcathinone (mephedrone, 4-MMC), 3,4-methylenedioxy-N-methylcathinone (methylone), butylone, naphyrone, 3-fluoromethcathinone (3-FMC), 4-methylethcathinone (4-MEC), α-pyrrolidinopentiophenone (α-PVP), 3',4'-methylenedioxy-α-pyrrolidinobutiophenone (MDPBP), 3-methyl-α-pyrrolidino-propiophenone (3-MPPP), ethcathinone, and (S)-2-diphenylmethylpyrrolidine ([S]-desoxy-D2PM) were obtained from Cayman Chemical Company. Methanol (high performance liquid chromatography [HPLC]-grade) was purchased from Avantor. All solvents and chemicals used in the experiment are of a minimum purity of ACS reagent grade.


Rate This Article
Your original vote has been tallied and is included in the ratings results.
View our top pages
Average rating for this page is: 2
Headlines from LCGC North America and Chromatography Online
LCGC TV Library
New Carbon-Based Phases for 2D LC
Emerging Trends in Pharmaceutical Analysis
Waters EU - Combining Mass and UV Spectral Data with Empower 3 Software to Streamline Peak Tracking and Coelution Detection
Pharma Focus: Where pharmaceutical analysis is heading
Source: Special Issues,
Click here