Determination of 2-Hydroxy-4-(methylthio)butanoic Acid in Bovine Serum and Sea Water - - Spectroscopy
 Home   Mass Spectrometry   ICP-MS   Infrared   FT-IR   UV-Vis   Raman   NMR   X-Ray   Fluorescence  
Issue Archive
Special Issues
The Application Notebook
Current Issue
Submission Guidelines
Digital Edition
Subscribe to the Digital Edition
The Wavelength
Subcribe to The Wavelength
Subscribe to the MS E-news
Market Profiles
Information for Authors
Advertiser services
Contact Us
Atomic Perspectives
Chemometrics in Spectroscopy
Focus on Quality
Laser and Optics Interface
Mass Spectrometry Forum
The Baseline
Molecular Spectroscopy Workbench

Determination of 2-Hydroxy-4-(methylthio)butanoic Acid in Bovine Serum and Sea Water

Special Issues
pp. s26-s32

Simple, sensitive, rapid, selective, and precise reversed-phase liquid chromatography (LC), electrospray ionization mass spectrometry (ESI-MS), and tandem MS (ESI-MS-MS) methods were developed and validated for the determination of 2-hydroxy-4-(methylthio)-butanoic acid (HMTBA) in bovine serum and sea water matrix. HMTBA is the α-hydroxy analog of the sulfur-containing amino acid methionine and is extensively used as a methionine supplement in poultry and bovine feed.

Methods were developed and validated for the determination of 2-hydroxy-4-(methylthio)butanoic acid (HMTBA), which is a water-soluble hydroxy acid. HMTBA is a commercially available α-hydroxy analogue of the sulfur-containing limiting amino acid methionine.

HMTBA and its isopropyl ester has been shown to be a highly effective dietary methionine supplement in dairy cows, poultry, and aquaculture (1–10). It has been shown that both the D and L enantiomers are converted to L-methionine (L-Met) through a stereospecific transamination pathway (11–13). The relative efficacy of uptake of racemic HMTBA and D,L-Met have been investigated in several studies; efficacies in such studies have been established through growth rate assessment in poultry or milk production rate in lactating cows. Studies show that HMTBA or its isopropyl ester supplementation yield higher growth rates and higher milk yields than Met supplementation (13,14). Uptake of HMTBA and its subsequent conversion to methionine has been studied in lactating dairy cows with infusion of 13C-labeled HMTBA. It was shown that infusion of HMTBA increased whole-body plasma flux of Met (15). It has been postulated that uptake of Met and HMTBA from the gastrointestinal track involve different mechanisms; Met uptake involves an active transport across the cell membrane and HMTBA uptake occurs through diffusion, this uptake is more efficient especially when animals experience stress, for example, heat stress. It has also been shown that HMTBA can lead to increased production of antioxidant metabolites such as taurine and reduced glutathione (16). However, experiments that link HMTBA supplemented in feed directly with its concentration in blood serum have not been reported in literature.

HMTBA has also been used in a chelated form such as zinc-HMTBA (Zn-[HMTBA]2) which is an efficient carrier of micronutrients (17,18). Zinc-HMTBA chelate has also been used as an antifouling agent in marine paints and coatings (19). It has been reported that it minimizes biofouling and is less toxic to the environment than other Zn and tin-based antifouling agents. It has also been shown that Zn-HMTBA is more effectively retained in the coatings. However, direct leaching of HMTBA from marine coatings and its stability in the marine environment have not been reported because of a lack of accurate and precise methods for HMTBA determination in sea water. This article deals with a sensitive, accurate, and precise method for quantification of HMTBA in blood serum and sea water.

Rate This Article
Your original vote has been tallied and is included in the ratings results.
View our top pages
Average rating for this page is: 0
Headlines from LCGC North America and Chromatography Online
LCGC TV Library
Narrow Particle Size Distribution in HPLC Columns
Next Generation UHPLC Technologies: Change the Landscape in LC
Food Analysis Focus: Unraveling the links between diet and human health using LC-MS-MS
Agilent EU - Determination of Parabens in Body Wash using Solid-Supported Liquid?Liquid Extraction
Source: Special Issues,
Click here