Laser-Induced Breakdown Spectroscopy: A Closer Look at the Capabilities of LIBS - - Spectroscopy
 Home   Mass Spectrometry   ICP-MS   Infrared   FT-IR   UV-Vis   Raman   NMR   X-Ray   Fluorescence  
Issue Archive
Special Issues
The Application Notebook
Current Issue
Submission Guidelines
Digital Edition
Subscribe to the Digital Edition
The Wavelength
Subcribe to The Wavelength
Subscribe to the MS E-news
Market Profiles
Information for Authors
Advertiser services
Contact Us
Atomic Perspectives
Chemometrics in Spectroscopy
Focus on Quality
Laser and Optics Interface
Mass Spectrometry Forum
The Baseline
Molecular Spectroscopy Workbench

Laser-Induced Breakdown Spectroscopy: A Closer Look at the Capabilities of LIBS

Volume 29, Issue 7, pp. 34-37

Laser-induced breakdown spectroscopy (LIBS) is a technique that works well for a wide range of applications. In this interview, Dr. Richard R. Hark, a professor in the Department of Chemistry at Juniata College in Huntingdon, Pennsylvania, discusses his work with LIBS in applications such as forensic science, conflict minerals, and geochemical fingerprinting. Part II of this interview will focus on Hark's work using LIBS for emergency response to hazardous materials along with an interview with a first-responder who has been involved in that research.

Early in your career you synthesized a large number of novel ninhydrin analogs as reagents for visualizing latent fingerprints on porous surfaces. Did that research naturally lead to your interest in laser-induced breakdown spectroscopy (LIBS)?

My background in forensic science did lead directly to my involvement with LIBS. I became familiar with the technique in 2002 and immediately saw the advantages of applying LIBS to the analysis of trace evidence.

I came to Raman spectroscopy in a more roundabout manner. Since 1999 I have taught a class called "The Chemistry of Art," which is an interdisciplinary course that explores the intersection of chemistry with the visual arts. In this laboratory-based class we learn about artists' materials, issues facing conservation scientists, and many basic chemistry concepts as we explore the chemistry and history of art media such as paints, dyes, metals, alloys, ceramics, glass, plastics, paper and fibers, and photographic materials. Because of the desire I had to get involved in research related to cultural heritage objects, I was able to spend a sabbatical leave at University College London and the Victoria and Albert Museum in 2007–2008. While there, I was privileged to work on a number of projects involving the analysis of medieval manuscripts and miniatures using Raman spectroscopy.

How have you incorporated LIBS into your undergraduate teaching and research efforts?

Our undergraduates have been using the technique in course work and research since I acquired our first LIBS instrument in 2003. LIBS has been a topic in our sophomore analytical chemistry course as well as the subject of upper-level special topics courses over the past decade. More than 20 undergraduate students have been involved in LIBS research projects over the past 11 years, resulting in numerous conference presentations and several papers. Last fall, Juniata was the site for the first Laser-induced Breakdown Spectroscopy for Undergraduate Research and Teaching (LIBS-URT) conference. The second LIBS-URT will be held again at Juniata October 10–11, 2014. Our goal is to promote awareness of the technique among faculty who teach and do research with undergraduate students.

Rate This Article
Your original vote has been tallied and is included in the ratings results.
View our top pages
Average rating for this page is: 9
Headlines from LCGC North America and Chromatography Online
LCGC TV Library
New Carbon-Based Phases for 2D LC
Waters EU - Combining Mass and UV Spectral Data with Empower 3 Software to Streamline Peak Tracking and Coelution Detection
Pharma Focus: Where pharmaceutical analysis is heading
Emerging Trends in Pharmaceutical Analysis
Source: Spectroscopy,
Click here