Sample Preparation Problem Solving for Inductively Coupled Plasma-Mass Spectrometry with Liquid Introduction Systems: Solubility, Chelation, and Memory Effects - - Spectroscopy
 Home   Mass Spectrometry   ICP-MS   Infrared   FT-IR   UV-Vis   Raman   NMR   X-Ray   Fluorescence  
Home
Magazine
Issue Archive
Subscribe/Renew
Special Issues
Reprints
The Application Notebook
Current Issue
Archive
Submission Guidelines
Training
SpecAcademy
E-solutions
Digital Edition
Subscribe to the Digital Edition
The Wavelength
Subcribe to The Wavelength
Subscribe to the MS E-news
Resources
Market Profiles
Information for Authors
SpecTube
Webcasts
Advertiser services
Contact Us
Columns
Atomic Perspectives
Chemometrics in Spectroscopy
Focus on Quality
Laser and Optics Interface
Mass Spectrometry Forum
The Baseline
Molecular Spectroscopy Workbench

Sample Preparation Problem Solving for Inductively Coupled Plasma-Mass Spectrometry with Liquid Introduction Systems: Solubility, Chelation, and Memory Effects


Spectroscopy
Volume 27, Issue 5, pp. 20-31

In inductively coupled plasma–mass spectrometry (ICP-MS), problems persist in the determination of analytes that are commonly investigated as well as in specialty applications for those seldom considered by most analysts. Understanding the chemistry that is common to different groups of analytes permits the development of successful approaches to rinse-out and elimination of memory effects. It also equips analysts for development of successful elemental analytical approaches with a broad spectrum of matrices and other analytical challenges, whether the sample is solid or liquid.

Liquid introduction, in general, and flow injection, specifically, are the most widely used sample introduction methods for inductively coupled plasma–mass spectrometry (ICP-MS). Nevertheless, problems persist in the determination of analytes that are commonly investigated, as well as in specialty applications for those seldom considered by most analysts. Understanding the chemistry that is common to different groups of analytes allows the development of successful approaches to rinse-out and elimination of memory effects. This understanding also equips analysts for developing successful elemental analytical approaches in the face of a broad spectrum of matrices and other analytical challenges, whether the sample is solid or liquid.

The majority of ICP-MS applications for elemental analysis utilize liquid sample introduction whether or not the original sample was a liquid. The relative ease or difficulty of a given analysis depends on several factors, including the matrix and the chemistry of the analyte.


Figure 1: Illustration of the accumulation of poorly water-soluble metal oxides on sample introduction system surfaces from 10 ultrapure water samples versus continuous rinse-out when the water is acidified. The decline in 238U counts per second from sample 11 to 16 occurs as nitric acid dissolves and mobilizes the accumulated U from the surfaces.
Probably the simplest matrix for elemental analytical purposes is water (that is, fresh water with low dissolved solids). Nevertheless, there are analysis problems with some analytes even in this matrix. General solubility rules state that alkali metal and ammonium ions are soluble in the presence of most anions. However, even in the presence of low concentrations of halide and polyatomic anions, many other metals hydrolyze and form poorly soluble hydroxides or oxides in water. When there is an absence of acid (or base in some cases), one may get an incomplete picture of the metal profile in a water sample because the poorly soluble hydroxide or oxide accumulates on walls of tubing, spray chambers, and nebulizers. An illustration of how such an incomplete profile may occur is presented in Figure 1. A total of 10 sequential water samples from an ultrapure water system were analyzed for 238 U intensity in counts per second (cps) in low resolution with a magnetic sector ICP-MS using a perfluoroalkoxy (PFA) 100 ÁL/min nebulizer and PFA double-pass spray chamber. If an analyst were to use uranium calibration standards diluted in ultrapure nitric acid before analyzing these samples, the uranium content would appear undetectable. A NIST 1643e water standard reference material (SRM) would give the appearance of validating the method accuracy. However, the NIST 1643 water SRM matrix contains 5% HNO3 to stabilize the characterized analytes in the water solution.

Samples 11–20 in Figure 1 are acidified with 1% ultrapure nitric acid. It is obvious that the 238 U counts are elevated approximately 20-fold in all samples after the initiation of sample acidification. However, the approximate 100-fold increase in sample 11 demonstrates that 238 U from unacidified ultrapure water alone was accumulating in the introduction system. From that point on, the U continues to be mobilized and rinsed from the introduction system until it reaches a constant level. Thus, without proper sample preparation, sample carryover from accumulation could result in a false negative determination.

Figure 1 illustrates that the solvent and rinse solution for a given method must account for the analyte's aqueous chemistry. Nitric acid (1–5%) is commonly used for metal dissolution and stabilization for ICP-MS analysis. Nitric acid is a strong acid, and general solubility rules suggest that nitrates are soluble. The hydronium counter-anion from nitric acid is nitrate, thus it would superficially seem to be the universal solvent for metals. It is an appropriate choice for many inorganic analytes. Dilute nitric acid also is commonly used in diluents for urine analysis for this reason.


Rate This Article
Your original vote has been tallied and is included in the ratings results.
View our top pages
Average rating for this page is: 3.42
Headlines from LCGC North America and Chromatography Online
Agilent EU - Method Development of Mixed-Mode Solid Phase Extraction for Forensics Appliations
Agilent NA - Method Development of Mixed-Mode Solid Phase Extraction for Forensics Appliations
Biotage EU - Extraction of GHB from Urine Using ISOLUTE® SLE+ Prior to GC/MS
FMS NA - Solid-Phase Extraction and Analysis Of Phosphorus Flame Retardants from Drinking Water
EMD Millipore NA - Water for GC-MS Analysis of VOCs
Source: Spectroscopy,
Click here