Why Is the Sky Blue? - - Spectroscopy
 Home   Mass Spectrometry   ICP-MS   Infrared   FT-IR   UV-Vis   Raman   NMR   X-Ray   Fluorescence  
Home
Magazine
Issue Archive
Subscribe/Renew
Special Issues
Reprints
The Application Notebook
Current Issue
Archive
Submission Guidelines
Training
SpecAcademy
E-solutions
Digital Edition
Subscribe to the Digital Edition
The Wavelength
Subcribe to The Wavelength
Subscribe to the MS E-news
Resources
Market Profiles
Information for Authors
SpecTube
Webcasts
Advertiser services
Contact Us
Columns
Atomic Perspectives
Chemometrics in Spectroscopy
Focus on Quality
Laser and Optics Interface
Mass Spectrometry Forum
The Baseline
Molecular Spectroscopy Workbench

Why Is the Sky Blue?


Spectroscopy
Volume 28, Issue 4, pp. 12-17

There are many ways in which spectroscopy is relevant to matters celestial. Here, we'll tackle one of the classic ones, one to which many know the simple explanation, but few know the details. In this column, we'll go over the details.

About 16 years ago (gee, have I been doing this column THAT long?), I wrote a column titled "Spectroscopy in the Sky," which was a discussion about rainbows. Well, there are other ways in which spectroscopy is relevant to matters celestial. Here we'll tackle one of the classic ones, one to which many know the simple explanation, but few know the details. In this column, we'll go over the details. I am honored to share this installment's by-line with my colleague from our Physics Department, Jim Lock, whose expertise is in particle scattering (that's a foreshadowing of the real reason the sky is blue!).

Why the Sky Is Blue — The Easy Answer

Because of Rayleigh scattering (1).

Why the Sky Is Blue — The Details




Consider an electromagnetic wave of light of angular frequency ω and wavelength λ. This wave passes through the earth's atmosphere as it goes from space to the surface of the earth. Let us pretend that air consists of molecules that have an effective radius a. The incoming wave at the position of the molecule has an electric field E inc given by the expression




where E 0 is the maximum field amplitude for the frequency ω, i is the square root of -1, t is time, and is the unit vector in the direction of the wave's polarization. As the light interacts with the air molecule, it imposes a time-dependent induced electric dipole, p(t), on the molecule whose value is given by

The proportionality constant a in equation 2 is called the polarizability of the molecule. Technically, its units are Cm2 /V (coulombs times meters squared per volt), but because it is often combined with the 4πε0 term found in most electrostatic formulas, it is usually expressed in units of (length)3 , typically cm3 or 3. Because the induced electric dipole moment is time-dependent, it represents an oscillation of electronic charge within the molecule. The molecule thus acts as a small antenna, producing electric dipole radiation. We can consider the behavior of this radiation from three different points of view of increasing sophistication.


Rate This Article
Your original vote has been tallied and is included in the ratings results.
View our top pages
Average rating for this page is: 4.57
Headlines from LCGC North America and Chromatography Online
Electronic Control of Carrier Gas Pressure, Flow, and Velocity
Application of Pyrolysis–Gas Chromatography–Mass Spectrometry for the Identification of Polymeric Materials
When Bad Things Happen to Good Food: Applications of HPLC to Detect Food Adulteration
The Column — NOW global!
Editors' Series: Multiclass, Multiresidue Monitoring of Veterinary Drug Residues in Food Animal Tissues
Source: Spectroscopy,
Click here