This column is a continuation of our discussion of the classical least squares (CLS) approach to calibration (1–3). As we
usually do when we continue the discussion of a topic through more than one column, we continue the numbering of equations
from where we left off in the last installment.
The insight we are trying to develop hinges on Figure 1 (which first appeared as Figure 5 in Part III of this series [3])
and the meaning of it in terms of equating the concepts of the spectroscopic and mathematical views of Beer's law as it applies
to spectra measured for the purpose of calibrations for quantitative analysis. Therefore, we also repeat equation 24:
where [M], [D], [T], and [H] represent the spectra (which are now vectors, in this representation) of the mixture, dichloromethane, toluene, and nheptane, respectively, and the corresponding c
_{1}, c
_{2}, and c
_{3} represent the concentrations of dichloromethane, toluene, and nheptane, respectively.
Figure 1: Absorbance spectra of pure dichloromethane, nheptane, and toluene, and of a ternary mixture of the three (xaxis
in wavenumbers), along with the concentration information that makes this the graphical representation of equation 24.

The reason for all this is the final sentence in our previous column (3): "Figure 5 is where the spectroscopy meets the math."
We also repeat some of the prior explanation: In this figure we have taken Figure 4 from Part III of this column series and
added some symbols to it. We now compare the figure (Figure 1 in this installment) to equation 24. In equation 24, we represented
the spectra of each of the components of the mixture by a symbol ([D], [T], [H]), each representing the corresponding spectrum.
In Figure 1 we have effectively rewritten equation 24 by replacing the symbol representing each spectrum by the actual spectrum.
That's why Figure 1 is where the spectroscopy meets the math. Figure 1 is the same as equation 24, except that the spectra,
which are indicated by the matrix symbols [D], [T], and [H] in equation 24, are shown in their conventional graphical form in Figure 1.
Table I

This can be even further emphasized by replacing the graphical presentation of the spectra with the actual numbers they represent,
as we just described them. In Table I we present the numbers that make up the four spectra that concern us here: the spectra
of the mixture of toluene, dichoromethane, and nheptane, and the absorbances of the three pure materials, whose spectra are presented in Figure 1.