Tutorial: Attenuation of X-Rays By Matter - In this X-ray tutorial, the authors attempt to answer the frequently asked question, "How deep do the X-rays penetrate my sample?" - Spectroscopy
 Home   Mass Spectrometry   ICP-MS   Infrared   FT-IR   UV-Vis   Raman   NMR   X-Ray   Fluorescence  
Issue Archive
Special Issues
The Application Notebook
Current Issue
Submission Guidelines
Digital Edition
Subscribe to the Digital Edition
The Wavelength
Subcribe to The Wavelength
Subscribe to the MS E-news
Market Profiles
Information for Authors
Lab TV
Advertiser services
Contact Us
Atomic Perspectives
Chemometrics in Spectroscopy
Focus on Quality
Laser and Optics Interface
Mass Spectrometry Forum
The Baseline
Molecular Spectroscopy Workbench

Tutorial: Attenuation of X-Rays By Matter
In this X-ray tutorial, the authors attempt to answer the frequently asked question, "How deep do the X-rays penetrate my sample?"

Volume 20, Issue 9, pp. 22-25

X-rays are attenuated as they pass through matter. That is, the intensity of an X-ray beam decreases the farther it penetrates into matter. Basically, each interaction of an X-ray photon with an atom of the material removes an X-ray from the beam, decreasing its intensity.

The amount of decrease in intensity of the X-ray beam depends upon two factors:

  • The depth of penetration (x) or thickness
  • A characteristic of the material called its "absorption coefficient" (A).

The intensity decreases exponentially with the distance traveled, or

I = I 0exp (– Ax)

where I 0 is the initial X-ray beam intensity. Note that this exponential decay of photon intensity applies in the optical region of the electromagnetic spectrum as well. In this region, it is known as the Beer–Lambert law.

The quantity A is the linear absorption coefficient. The quantity usually encountered in tabulations of material properties is the mass absorption coefficient (μ). These two coefficients are related by the density of the material (ρ) as μ = A/ρ.

Attenuation Length

An interesting application of this equation is to determine the depth of penetration of X-rays. The attenuation length is defined as the depth into the material where the intensity of the X-rays has decreased to about 37% (1/e) of the value at the surface. That is, I = (1/e)I 0, or I/I 0 = 1/e. [Recall that e, sometimes called Euler's number or Napier's constant, is the base of natural logarithms, or e ≈ 2.7183.] Then, substituting into Equation 1, we get

(I/I 0) = exp (–μρx)
ln (1/e) = (–μρx)
–1 = (–μρx)
x = 1/(μρ)

This also is referred to as the "mean free path" of the X-rays.

Table 1
For example, given a 109Cd radioisotope source of X-rays with an energy of 22.1 keV, how far do these penetrate a piece of pure iron, (atomic number 26)? From Table I, we find the mass absorption coefficient for iron at 22.1 keV is μ = 18.2 cm2/g. The density of iron ρ = 7.86 g/cm3. Plugging in the numbers, we find x = 0.007 cm = 0.07 mm = 70 μm. A comparison of this depth for the same incoming X-ray energy both for lighter and heavier elements is shown in Table I.

Rate This Article
Your original vote has been tallied and is included in the ratings results.
View our top pages
Average rating for this page is: 3.98
Headlines from LCGC North America and Chromatography Online
Agilent EU - Ultrafast Analysis of Clozapine and Norclozapine in Serum Using the Agilent RapidFire High-Throughput Mass Spectrometry System
Thermo EU - Determination of Total Inorganic Arsenic in Fruit Juice Using High-Pressure Capillary Ion Chromatography
Agilent EU - Determine Blood Alcohol with Dual Column/Dual FID for Precision and Reproducibility
Agilent EU - Fast Analysis of Fire Debris Using an Agilent 5975T LTM GC-MSD with Capillary Trap Sampling (CTS)
Thermo EU - Ion Chromatography Assay for Chloride and Sulfate in Adenosine
Source: Spectroscopy,
Click here