Photoacoustic Spectroscopy - - Spectroscopy
 Home   Mass Spectrometry   ICP-MS   Infrared   FT-IR   UV-Vis   Raman   NMR   X-Ray   Fluorescence  
Issue Archive
Special Issues
The Application Notebook
Current Issue
Submission Guidelines
Digital Edition
Subscribe to the Digital Edition
The Wavelength
Subcribe to The Wavelength
Subscribe to the MS E-news
Market Profiles
Information for Authors
Advertiser services
Contact Us
Atomic Perspectives
Chemometrics in Spectroscopy
Focus on Quality
Laser and Optics Interface
Mass Spectrometry Forum
The Baseline
Molecular Spectroscopy Workbench

Photoacoustic Spectroscopy

Volume 21, Issue 9, pp. 14-16

One useful aspect of photoacoustic spectroscopy of gases is that very bright light sources — lasers — can be used to detect very tiny concentrations of a particular gas, on the order of parts per trillion. This makes photoacoustic spectroscopy very useful in following the concentrations of trace gases in mixtures, like soot in diesel exhaust or NOx in the atmosphere. Photoacoustic spectroscopy can also be limited because laser light is not very broad in bandwidth; the analyte molecule must absorb some light from the source in order to be detectable. Saturation effects can also cause problems (6).

Photoacoustic Spectroscopy: Condensed Phases

The mechanism of the photoacoustic effect in condensed samples is not as straightforward as it is for gas samples. For example, in 1973, Parker (7) noticed a photoacoustic signal apparently coming from the windows of the sample cell, which should have been transparent to the incoming radiation. Further (and this might be unique to this particular form of spectroscopy), the exact mechanism of spectrum production depends on the type of detector used. The commonly accepted mechanism for the photoacoustic effect is called RG theory, after its developers Rosencwaig and Gersho (8,9). The main source of the acoustic wave is the repetitive heat flow from the absorbing condensed-phase sample to the surrounding gas, followed by propagation of the acoustic wave through the gas column to microphone-based detector.

However, a photoacoustic signal also can be detected piezoelectrically. Instead of being dissipated as heat, the absorbed radiant energy also can be transferred through the solid-state vibrational modes, or phonon modes, of the sample. The motions of these phonon modes are nondissipative (unlike heating), limited only by the size of the sample. A piezoelectric detector physically connected to the sample can detect absorbed energy in this manner. Although piezoelectric detection is about 100 times less sensitive than microphone detectors, it can be preferable for large samples or for samples that do not efficiently convert absorbed light to heat.

Other Issues

Figure 3: How photoacoustic spectroscopy can perform depth profiling.
One advantage of photoacoustic spectroscopy is that it is nondestructive to the sample; the sample does not have to be dissolved in some solvent or embedded in a solid-state matrix. Samples can be used "as is." Another advantage is the potential for performing depth profiles of analytes in optically transparent media. Figure 3 shows how this is possible: essentially, the slower the modulation rate, the farther the heat can diffuse before the incoming light is cut off. Figure 4 shows examples of infrared photoacoustic spectra of poly(vinylidene chloride) films using different modulations, showing differences in the spectra due to differences in penetration depth.

Rate This Article
Your original vote has been tallied and is included in the ratings results.
View our top pages
Average rating for this page is: 3.41
Headlines from LCGC North America and Chromatography Online
Emerging Trends in Pharmaceutical Analysis
Method Development of Mixed-Mode Solid Phase Extraction for Forensics Appliations
Detection of Low-Level Sulfur Compounds in Spearmint Oil
Water for GC-MS Analysis of VOCs
Differential Analysis of Olive Oils with Pegasus® GC-HRT and ChromaTOF-HRT® Reference Feature
Source: Spectroscopy,
Click here