Special Issues-09-01-2016

Special Issues

Raman spectroscopy is a well-suited spectroscopic technique for process development and control within development labs in chemical, pharmaceutical, and other industries. This article demonstrates the utility of portable Raman spectroscopy as a simple and versatile tool for in-situ monitoring of reactions using univariate analysis such as peak trending, as well as multivariate analysis approaches to predict the end point of chemical reactions. Using portable Raman systems allows users to make measurements in the lab, but also serves as a proof of concept for the Raman measurements to be implemented at-line or on-line in small pilot plants or large scale production sites. For known reactions that are repetitively performed, or for continuous online process monitoring of reactions, the present approach provides a convenient solution for process understanding and the basis for future implementation.

The availability of quality drugs is crucial in the event of a pandemic. Here, we report our pilot efforts to perform rapid screening of anti-infective drugs for confirmation of drug product quality using near infrared and Raman library methods. The methods reported are nondestructive towards the sample and are designed to facilitate rapid physical testing of drugs at the point of use or in a field setting. We built a representative library through voluntary collaboration with six different manufacturers of antibiotic and antiviral drugs. The drugs supplied by these manufacturers are representative of imported U.S. FDA approved finished products. We successfully transferred the spectral libraries from laboratory-based instruments to field-deployable handheld near infrared and Raman instruments and challenged the library methods using independent samples from different batches.

In this paper, we examine the relative performance of 532 and 785 nm portable Raman systems, as well as demonstrate an automated analytical methodology applicable for carbon nanotube (CNT) characterization and quality control applications. Both 532 and 785 nm Raman spectra were used to directly analyze and compare important CNT structural parameters and properties including CNT diameters, diameter distributions, CNT structural quality (% of defects), CNT types, and other properties. The data indicate advantages in a number of areas for using 532 versus 785 nm excitation for CNT Raman measurements.

Many automotive shops use a laundry service to clean their soiled shop towels. Previous studies have shown the towels can retain metals even after laundering and long-term exposure to certain metals such as lead could potentially result in health issues to employees using the towels. Laundered shop towels were collected from local automotive shops and analyzed to assess the ability of X-ray fluorescence (XRF) spectroscopy using a handheld system to measure harmful metal contaminants such as lead in the towels.

Visible-near infrared (VNIR) spectroscopy provides a wealth of compositional information, and is a valuable tool in planetary exploration. The 2016 GeoHeuristic Operational Strategies Testing (GHOST) program is a terrestrial analog rover simulation designed to refine Mars Rover operational strategies. The GHOST program utilized a TerraSpec Halo handheld VNIR spectrometer to simulate the function of the Mars Science Laboratory (MSL) ChemCam and Mars 2020 rover SuperCam. Commercially available instrumentation is employed to eliminate engineering, communication, and mission-specific specifications, and allow the GHOST team to focus solely on investigative protocols. The portable spectrometer allowed for rapid data acquisition of in-situ outcrops, similar to those data gathered by Mars rovers, and allowed the instrument operator to rapidly traverse the field site, maximizing the number of data points gathered for the science teams.

Click the title above to open the Spectroscopy September 2016 Advances in Portable and Handheld Spectroscopy Supplement, Vol 31 No s9, in an interactive PDF format.