Spectroscopy Interviews

The 2018 Emerging Leader in Molecular Spectroscopy Award: Interview with award recipient Megan C. Thielges regarding her career and research to date

Megan Thielges, an associate professor of chemistry at Indiana University is the recipient of the 2018 Emerging Leader in Molecular Spectroscopy Award, presented by Spectroscopy magazine. This award, presented at the SciX conference each year, recognizes a uniquely talented young molecular spectroscopist. This October, Prof. Thielges will give a plenary lecture and be honored within a SciX award symposium. She recently spoke with us regarding her research work, and a few other topics, demonstrating the application of site- specific 2D IR spectroscopy for investigating protein function dynamics.

Infrared (IR)

The C=O Bond, Part VII: Aromatic Esters, Organic Carbonates, and More of the Rule of Three

By Brian C. Smith

Aromatic esters follow the ester Rule of Three, but each of these three peak positions is different for saturated and aromatic esters, which makes them easy to distinguish. Organic carbonates are structurally similar to esters and follow their own Rule of Three.

The C=O Bond, Part VI: Esters and the Rule of Three

By Brian C. Smith

Esters are a common and economically important functional group made by reacting an alcohol and a carboxylic acid.

The Carbonyl Group, Part V: Carboxylates—Coming Clean

By Brian C. Smith

Carboxylates are made by reacting carboxylic acids with strong bases such as inorganic hydroxides. Carboxylates contain two unique carbon–oxygen “bond and half” linkages that coordinate with a metal ion to give two strong infrared peaks, which make them easy to see.

The C=O Bond, Part IV: Acid Anhydrides

By Brian C. Smith

Acid anhydrides are unique in that they have two carbonyl groups in them. The intensity and position of their IR peaks can be used to determine which of the four types of anhydride exist in a sample.

The C=O Bond, Part III: Carboxylic Acids

By Brian C. Smith

How to spot carboxylic acids in your IR spectra

Raman

Advancing Forensic Analyses with Raman Spectroscopy

By Spectroscopy Editors

Igor K. Lednev, of the Department of Chemistry at the University at Albany, the StateUniversity of New York, has been developing the use of Raman spectroscopy for a varietyof forensic applications, including determining the age of blood stains and linking gunshot residues to specific ammunition–firearm combinations.

Detecting Pathogenic Mycoplasmas with Surface-Enhanced Raman Spectroscopy

By Spectroscopy Editors

Duncan C. Krause, of the Department of Microbiology at the University of Georgia, discusses his group’s work to establish a SERS method with silver nanorod-array substrates for detecting the pathenogenic mycoplasma that causes bronchitis and pneumonia.

Understanding Emerging Biopolymers with 2D Raman Correlation Spectroscopy

By Spectroscopy Editors

Two-dimensional (2D) Raman correlation spectroscopy is a powerful analytical technique for analyzing a system under the influence of an external perturbation. Isao Noda, of the Department of Materials Science and Engineering, at the University of Delaware and Danimer Scientific, has been developing 2D Raman correlation spectroscopy and applying it to the study of various materials, including exciting new biopolymers. He recently spoke to us about this work.

Raman Microscopy Combined with Tensile Deformation for Understanding Changes in Polymer Morphology

By Fran Adar

We show Raman spectra of polymeric fibers acquired as a function of increasing stress and temperature. With knowledge of Raman band assignments, it becomes possible to understand, in detail, the molecular changes that are responsible for polymer orientation and crystallization.

In Situ Raman Spectroscopy Monitoring of the Reaction of Sulfur Trioxide with Polyethylene Fibers in Chlorinated Solvents

By Xiaoyun Chen, Jasson Patton, Bryan Barton, Jui-Ching Lin, Michael Behr, Zenon Lysenko

The apparent reaction kinetics between SO3 and polyethylene are investigated in various halogenated solvents using in situ Raman spectroscopy with an immersion Raman probe, demonstrating the power of in situ Raman spectroscopy to monitor hazardous reactions.

UV-vis

Overview of High-Efficiency Transmission Gratings for Molecular Spectroscopy

By Spectroscopy Editors

This article provides a basic overview of the capabilities of transmission gratings optimized for molecular spectroscopy.

Scattering Impact Analysis and Correction for Leaf Biochemical Parameter Estimation Using Vis–NIR Spectroscopy

By Spectroscopy Editors

Simulated leaf spectral data were generated to analyze scattering impact and then compared to experimental data to validate the conclusions of the simulation.

An Integration of Modified Uninformative Variable Elimination and Wavelet Packet Transform for Variable Selection

By Spectroscopy Editors

The wavelet packet transform (WPT) combined with the modified uninformative variable elimination (MUVE) method (WPT–MUVE) is proposed to select variables for multivariate calibration of spectral data.

Peer-Reviewed Articles

Characterization of Glitter Cosmetic Particles Using FT-IR Spectroscopy

By Kandyss Najjar, Candice M. Bridge

Glitter particles from cosmetics may transfer during personal assaults, and thus glitter may be useful as a forensic tool. In this study, glitter samples were analyzed using ATR–FT-IR in an attempt to develop a characterization scheme to aid in the identification of these particles.

Enhanced Protein Structural Characterization Using Microfluidic Modulation Spectroscopy

By Eugene Ma, Libo Wang, Brent Kendrick

This article introduces a new IR technique, microfluidic modulation spectroscopy (MMS), that is designed to address the needs in biotherapeutics, and presents data from measurements of commercially available proteins.

Direct Determination of Oil Content in Binary Mixtures of Peanut and Canola Oils Using Partial Least Squares and Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy

By Chloe Lewis, Ghalib A. Bello, Gerard G. Dumancas

This study presents a novel, time-efficient, and cost-effective procedure for determining the percentage of oil content in binary mixtures of peanut and canola oils.

News

Clare P. Grey Receives EAS Award for Outstanding Achievements in Magnetic Resonance

The EAS Award for Outstanding Achievements in Magnetic Resonance will be presented to Clare P. Grey at the Eastern Analytical Symposium (EAS) on November 14 in Princeton, New Jersey.

Stephen Cramer to Receive EAS Award for Outstanding Achievements in Vibrational Spectroscopy

Stephen Cramer of the University of California, in Davis California, will be presented with the EAS Award for Outstanding Achievements in Vibrational Spectroscopy at the Eastern Analytical Symposium (EAS), taking place in Princeton, New Jersey on November 12–14.

Igor K. Lednev Receives NYSAS for Applied Spectroscopy Gold Medal Award

The New York and New Jersey section of the Society for Applied Spectroscopy (NYSAS) will present the Gold Medal Award to Igor K. Lednev at the Eastern Analytical Symposium (EAS), in Princeton, New Jersey, on November 12.

SpecTube – Supplier Videos

ICP/ICP-MS

Not All Nanoparticle Analysis Challenges are Created Equal

By Laura Bush

The detection, quantitation, and characterization of nanoparticles using inductively coupled plasma–mass spectrometry (ICP-MS), and in particular using single-particle ICP-MS (SP-ICP-MS), has developed significantly in recent years. However, the difficulties involved in this type of analysis vary, depending on the composition of the nanoparticles. Martín Resano of the University of Zaragoza, together with colleagues from Ghent University, has recently developed a method for characterizing nanoparticles made from silicon dioxide (Si02), which are much more challenging to detect than those made from silver or gold. He recently spoke to us about this work.

New Atomic Spectroscopy–Based Approaches in Geochronology: An Interview with the 2018 Emerging Leader in Atomic Spectroscopy

By Spectroscopy Editors

Geochronology is an exciting area of atomic spectroscopy and earth science research. One of the goals is to answer tectonic questions, and in particular, how the crust responds to continent–continent collision. John M. Cottle, a professor of earth science at the University of California, Santa Barbara, is one of the scientists on that mission. Cottle and his research group are at the forefront of discovery in geochronology, combining both laboratory and field-based research. In particular, Cottle is a leader in the development of novel laser-ablation inductively coupled plasma–mass spectrometry (LA-ICP-MS) measurements and their application to tectonic questions in convergent orogens, which are mountain ranges formed when a continental plate crumples and is pushed upwards.

Effective Removal of Isobaric Interferences on Strontium and Lead Using Triple-Quadrupole ICP-MS

By Daniel Kutscher, Simon Lofthouse, Simon Nelms, Shona McSheehy Ducos

Unresolved interferences can lead to biased results in ICP-MS analyses. Here we describe an approach for removing those interferences using reactive gases.

Mass Spectrometry

Peptide Mapping of Monoclonal Antibodies and Antibody–Drug Conjugates Using Micro-Pillar Array Columns Combined with Mass Spectrometry

By Koen Sandra, Jonathan Vandenbussche, Isabel Vandenheede, Bo Claerebout, Jeff Op De Beeck, Paul Jacobs, Wim De Malsche, Gert Desmet, Pat Sandra

The structural complexity of monoclonal antibodies (mAbs) challenges the capabilities of even the most advanced chromatography and mass spectrometry techniques. This study examines the use of micro-pillar array columns in combination with mass spectrometry for peptide mapping of both mAbs and antibody–drug conjugates (ADCs).

Mass Spectrometry Techniques to Unravel the Heterogeneity of Glycoproteins

By Asif Shajaha, Parastoo Azadi

Since glycans are responsible for bioactivity, solubility, immunogenicity, and clearance rate from circulation, it is vital to have a detailed map of glycans in therapeutic glycoproteins. Detailed glycoprotein structural analysis must be able to identify the peptide sequence where the glycans are attached as well as the structure of the glycan portion, including oligosaccharide sequence and glycosyl linkages. This article details methods for mass spectrometry experiments on both released glycans (“glycomics”), as well as on intact glycopeptides (“glycoproteomics”) using electron transfer dissociation, high-energy collision dissociation, and collision-induced dissociation fragmentation pathways, which are needed to fully elucidate the structure of glycoproteins.

Gas Chromatography–Mass Spectrometry Characterization of Vegetable Oil–Derived Potent Antimicrobial Agents

By Racha Seemamahannop, Prakash Wadhawa, Shubhen Kapila, Abha Malhotra

Under a suitable thermal oxidation regime, vegetable oils yield a mixture of volatile and semivolatile organics that exhibit very high antimicrobial activities against a variety of microbial species. Volatile and semivolatile products were characterized with GC–MS using electron ionization and chemical ionization. The thermal oxidation of vegetable oils resulted in the formation of an array of short and medium-chain acids, aldehydes, and ketones that act synergistically to yield a potent antimicrobial disinfectant.

lorem ipsum