A recent study used combined chemical analysis approach to investigate rat brains harvested one week after induction of photothrombotic stroke.
A recent study used combined chemical analysis approach to investigate rat brains harvested one week after induction of photothrombotic stroke (1). Researchers from Austria, the Netherlands, and Qatar used Fourier transform infrared (FT-IR) spectroscopy and laser ablation inductively coupled plasma–mass spectrometry (LA-ICP-MS) for the imaging of cerebral ischemia to obtain a deepened analysis compared to single techniques or side-by-side analysis.
The LA-ICP-MS data were normalized using an internal standard (a thin gold layer). Hyperspectral data cubes that were acquired were fused and subjected to multivariate analysis. Brain regions affected by stroke as well as unaffected gray and white matter were identified and classified using a model based on either partial least squares discriminant analysis (PLS-DA) or random decision forest (RDF) algorithms.
According to the researchers, the RDF classifier built on the combined data sets appeared to be more precise compared to classifiers built on the individual data sets. They concluded stated that multisensory hyperspectral imaging with subsequent RDF-based analysis can deepen the understanding of biochemical processes in ischemic brains and enables automated identification of different types of tissues.
Reference
Get essential updates on the latest spectroscopy technologies, regulatory standards, and best practices—subscribe today to Spectroscopy.
AI-Powered Raman with CARS Offers Laser Imaging for Rapid Cervical Cancer Diagnosis
July 15th 2025Chinese researchers have developed a cutting-edge cervical cancer diagnostic model that combines spontaneous Raman spectroscopy, CARS imaging, and artificial intelligence to achieve 100% accuracy in distinguishing healthy and cancerous tissue.
How Analytical Chemists Are Navigating DOGE-Driven Funding Cuts
July 14th 2025DOGE-related federal funding cuts have sharply reduced salaries, lab budgets, and graduate support in academia. Researchers view the politically driven shifts in priorities as part of recurring systemic issues in U.S. science funding during administrative transitions. The impact on Federal laboratories has varied, with some seeing immediate effects and others experiencing more gradual effects. In general, there is rising uncertainty over future appropriations. Sustainable recovery may require structural reforms, leaner administration, and stronger industry-academia collaboration. New commentary underscores similar challenges, noting scaled-back graduate admissions, spending freezes, and a pervasive sense of overwhelming stress among faculty, students, and staff. This article addresses these issues for the analytical chemistry community.