Short Tutorial: Complex-Valued Chemometrics for Composition Analysis
June 16th 2025In this tutorial, Thomas G. Mayerhöfer and Jürgen Popp introduce complex-valued chemometrics as a more physically grounded alternative to traditional intensity-based spectroscopy measurement methods. By incorporating both the real and imaginary parts of the complex refractive index of a sample, this approach preserves phase information and improves linearity with sample analyte concentration. The result is more robust and interpretable multivariate models, especially in systems affected by nonlinear effects or strong solvent and analyte interactions.
Best of the Week: SciX Award Interviews, Tip-Enhanced Raman Scattering
Top articles published this week include an interview about aromatic–metal interactions, a tutorial article about the recent advancements in tip-enhanced Raman spectroscopy (TERS), and a news article about using shortwave and near-infrared (SWIR/NIR) spectral imaging in cultural heritage applications.
Hyperspectral Imaging for Walnut Quality Assessment and Shelf-Life Classification
Researchers from Hebei University and Hebei University of Engineering have developed a hyperspectral imaging method combined with data fusion and machine learning to accurately and non-destructively assess walnut quality and classify storage periods.
Researchers Use Machine Learning and Hyperspectral Imaging to Pinpoint Best Apple Bagging Techniques
A new study demonstrates that paper bagging significantly enhances Fuji apple quality and appearance. Hyperspectral imaging combined with machine learning offers a powerful, non-destructive method for evaluating fruit grown under different cultivation conditions.
AI-Powered Near-Infrared Imaging Remotely Identifies Explosives
June 11th 2025Chinese researchers have developed a powerful new method using near-infrared (NIR) hyperspectral imaging combined with a convolutional neural network (CNN) to identify hazardous explosive materials, like trinitrotoluene (TNT) and ammonium nitrate, from a distance, even when concealed by clothing or packaging.
Lisa Flanagan and fellow researchers at the University of California, Irvine (Irvine, California) conducted a study exploring a method to isolate astrocyte-biased human neural stem and progenitor cells (hNSPCs), which are valuable for treating neurological diseases. Flanagan will receive the 2025 Mid-Career Award from the AES Electrophoresis Society, awarded for exceptional contributions to the field of electrophoresis, microfluidics, and related areas by an individual who is currently in the middle of their career.
Machine Learning and NMR Unite to Authenticate Wine with Near-Perfect Accuracy
In a recent study published in the journal Beverages, a team of researchers from the National Institute for Research and Development of Isotopic and Molecular Technologies and Babeș-Bolyai University explored a new way to improve wine authentication
MIR Spectroscopy Validates Origin of Premium Brazilian Cachaças
A recent study published in the journal Food Chemistry explored Brazil’s cachaça industry, focusing on a new analytical method that can confirm the geographic origin of cachaças from the Brejo Paraibano region in Brazil.
New NIR/Raman Remote Imaging Reveals Hidden Salt Damage in Historic Fort
June 10th 2025Researchers have developed an analytical method combining remote near-infrared and Raman spectroscopy with machine learning to noninvasively map moisture and salt damage in historic buildings, offering critical insight into ongoing structural deterioration.
New Machine Learning Model Distinguishes Recycled PET with 10% Accuracy Threshold
Researchers from Jinan University and Guangzhou Customs Technology Center have developed a cost-effective UV-vis spectroscopy and machine learning method to accurately identify recycled PET content as low as 10%, advancing sustainable packaging and circular economy efforts.
Night Vision Boosts Affordable Raman System for Long-Range Chemical Detection
June 9th 2025Researchers in Thailand have developed a cost-effective standoff Raman spectroscopy system using a night-vision intensified spectrometer and digital correction algorithms. The system reliably detects chemical compounds at distances up to 60 meters with high spectral resolution.