In this second part of this four-part series on spectroscopy instrument components, we look into optical components or subassemblies used for vibrational spectroscopy instruments. Our “under the hood” look continues as we survey the most typical instrument optical design component materials. As we continue publishing this survey series, we note that several tutorial articles and The Spectroscopy Instrument Components Terminology Guide, the latter of which was published digitally in February 2022, are available to our readers.
In Part 2 of our four-part spectroscopy components survey article, we take a closer look at a variety of aspects associated with spectroscopy optical materials and designs to include infrared (IR), Raman, and near-IR (NIR) optics, UV optics, visible optics, charge-coupled devices (CCDs), monochromators, interferometers, diode arrays, digital light processing (DLP) designs, microscopes, and hyperspectral imaging (HSI) systems. These are shown in Table III, with the table containing four columns of information content—the component name, a text description, basic specifications, and references and links are given in the table (1–5). Part I of this series is published in the March 2022 issue. Optical filters (high-pass, low-pass, interference, acousto-optic tunable filters [AOTF], tilting, broadband, narrowband, neutral density, custom, and so forth) is a rather large subject and beyond the scope of this article series. The Spectroscopy Instrument Components Terminology Guide covers the general filter terms (1), and we note the subject of optical filters would be an excellent topic for a future separate article. For the table, all components or optical assemblies are listed in alphabetical order.
(1) J. Workman, The Spectroscopy Instrument Components Terminology Guide 2022 37(s2), 1–25 (2022).
(2) J. Workman, The Concise Handbook of Analytical Spectroscopy: Physical Foundations, Techniques, Instrumentation and Data Analysis, in five volumes, first edition, UV, Vis, NIR, IR, and Raman (World Scientific Publishing-Imperial College Press, Hackensack, NJ and Singapore, 2016). ISBN-13: 978-9814508056.
(3) J.M. Chalmers and P.R. Griffiths, Handbook of Vibrational Spectroscopy (John Wiley & Sons, New York, NY, 1st ed., 2002). ISBN: 978-0-471-98847-2
(4) ASTM (American Society for Testing and Materials) ASTM Volume 03.06, “Molecular Spectroscopy and Separation Science; Surface Analysis” (ASTM International, West Conshohocken, PA, 2017).
(5) N.B. Colthup, L.H. Daly, and S.E. Wiberley, Introduction to Infrared and Raman Spectroscopy (Academic Press/ Elsevier, Boston, MA, 3rd ed., 1990). ISBN: 9780121825546.
Best of the Week: AI, Rapid Food Analysis, Agriculture Analysis, and Soil Property Prediction
September 6th 2024Top articles published this week include a review article on the latest research in agriculture analysis, a peer-reviewed article on near-infrared (NIR) spectroscopy, and an interview about using fluorescence spectroscopy in cheese ripening.
A Review of the Latest Spectroscopic Research in Agriculture Analysis
September 4th 2024Spectroscopic analytical techniques are crucial for the analysis of agricultural products. This review emphasizes the latest advancements in several key spectroscopic methods, including atomic, vibrational, molecular, electronic, and X-ray techniques. The applications of these analytical methods in detecting important quality parameters, adulteration, insects and rodent infestation, ripening, and other essential applications are discussed.
Examining the Role of ATR-FT-IR Spectroscopy and Machine Learning in Wood Forensics, Part 2
September 4th 2024In part two of our exploration of wood forensics, a deep dive of a recent study from Panjab University explains why attenuated total reflectance Fourier transform infrared (ATR-FT-IR) spectroscopy improves on traditional methods in this space.