In this second part of this four-part series on spectroscopy instrument components, we look into optical components or subassemblies used for vibrational spectroscopy instruments. Our “under the hood” look continues as we survey the most typical instrument optical design component materials. As we continue publishing this survey series, we note that several tutorial articles and The Spectroscopy Instrument Components Terminology Guide, the latter of which was published digitally in February 2022, are available to our readers.
In Part 2 of our four-part spectroscopy components survey article, we take a closer look at a variety of aspects associated with spectroscopy optical materials and designs to include infrared (IR), Raman, and near-IR (NIR) optics, UV optics, visible optics, charge-coupled devices (CCDs), monochromators, interferometers, diode arrays, digital light processing (DLP) designs, microscopes, and hyperspectral imaging (HSI) systems. These are shown in Table III, with the table containing four columns of information content—the component name, a text description, basic specifications, and references and links are given in the table (1–5). Part I of this series is published in the March 2022 issue. Optical filters (high-pass, low-pass, interference, acousto-optic tunable filters [AOTF], tilting, broadband, narrowband, neutral density, custom, and so forth) is a rather large subject and beyond the scope of this article series. The Spectroscopy Instrument Components Terminology Guide covers the general filter terms (1), and we note the subject of optical filters would be an excellent topic for a future separate article. For the table, all components or optical assemblies are listed in alphabetical order.
(1) J. Workman, The Spectroscopy Instrument Components Terminology Guide 2022 37(s2), 1–25 (2022).
(2) J. Workman, The Concise Handbook of Analytical Spectroscopy: Physical Foundations, Techniques, Instrumentation and Data Analysis, in five volumes, first edition, UV, Vis, NIR, IR, and Raman (World Scientific Publishing-Imperial College Press, Hackensack, NJ and Singapore, 2016). ISBN-13: 978-9814508056.
(3) J.M. Chalmers and P.R. Griffiths, Handbook of Vibrational Spectroscopy (John Wiley & Sons, New York, NY, 1st ed., 2002). ISBN: 978-0-471-98847-2
(4) ASTM (American Society for Testing and Materials) ASTM Volume 03.06, “Molecular Spectroscopy and Separation Science; Surface Analysis” (ASTM International, West Conshohocken, PA, 2017).
(5) N.B. Colthup, L.H. Daly, and S.E. Wiberley, Introduction to Infrared and Raman Spectroscopy (Academic Press/ Elsevier, Boston, MA, 3rd ed., 1990). ISBN: 9780121825546.
Jerome Workman, Jr. is the Senior Technical Editor for Spectroscopy. Direct correspondence about this article to jworkman@mjhlifesciences.com ●
New Deep Learning AI Tool Decodes Minerals with Raman Spectroscopy
May 21st 2025Researchers have developed a powerful deep learning model that automates the identification of minerals using Raman spectroscopy, offering faster, more accurate results even in complex geological samples. By integrating attention mechanisms and explainable AI tools, the system boosts trust and performance in field-based mineral analysis.
How THz and THz-Raman Spectroscopy Are Used in Drug Safety, Farming, and Mining
May 20th 2025A new review by researchers from IIT Delhi and the University of Queensland highlights how Terahertz (THz) and low-wavenumber Raman (THz-Raman) spectroscopy are advancing quality control and efficiency in pharmaceuticals, agriculture, and mineral industries. These powerful non-invasive tools enable detailed multi-parameter sensing, offering deeper insight at the molecular level.
Whey Protein Fraud: How Portable NIR Spectroscopy and AI Can Combat This Issue
May 20th 2025Researchers from Tsinghua and Hainan Universities have developed a portable, non-destructive method using NIR spectroscopy, hyperspectral imaging, and machine learning to accurately assess the quality and detect adulteration in whey protein supplements.