All News


Forest trees. Nature green wood backgrounds Sunny Day | Image Credit: © sosiukin - stock.adobe.com

The study reveals that leaf spectroscopy far outperforms traditional leaf traits in predicting forest leaf dark respiration across diverse ecosystems, offering a more accurate and scalable approach for improving carbon cycle models.

Spectrum displaying absorption peaks at specific frequencies © Bos Amico  -chronicles-stock.adobe.com

Vibrational spectroscopy is undergoing a major transformation driven by advances in new AI and machine learning, portable instrumentation, nanofabrication, hyperspectral imaging, and robust chemometrics. These developments are enabling more sensitive measurements, field-deployable analysis, multimodal data fusion, and automated spectral interpretation suitable for real-world industrial and clinical use. As these technologies converge, the field is positioned for a renaissance that may redefine how spectroscopy is practiced by 2030.

Researchers at the University of Lausanne investigated the potential of rapid and portable spectroscopic techniques such as Raman and NIR for illicit drug profiling, with the aim of enhancing the timeliness and operational utility of the generated intelligence for ongoing investigations as opposed to utilizing gas chromatography-mass spectroscopy.

Light spectrum representing hyperspectral imaging in a manufacturing environment.© Sekai -chronicles-stock.adobe.com

A new perspective article by Anna de Juan and Rodrigo Rocha de Oliveira highlights how hyperspectral imaging (HSI), paired with advanced chemometrics, is redefining process analytical technology (PAT) by coupling chemical specificity with full-field spatial resolution. Their work outlines how HSI surpasses classical spectroscopic PAT tools and enables quantitative, qualitative, and mechanistic insight into chemical processes in real time.

Jorge Caceres, a professor at Complutense University in Madrid, Spain | Photo Credit: © Jorge Caceres

Jorge Caceres, a professor at Complutense University in Madrid, Spain, sat down with Spectroscopy to discuss how LIBS works as a fast, simple, cost-effective, and analytically conclusive technique for confidently re-associating human bone remains.

In this study, surface-enhanced Raman spectroscopy (SERS) and solvent extraction were used to detect aconitine (AC) in various complex matrices using gold nanorod substrates. The experimental results demonstrated that ether efficiently extracted AC from soy sauce as an example complex matrix.

Damodaran Krishnan Achary of University of Pittsburgh highlights how modern NMR education is shifting toward real-world samples and interdisciplinary applications, reflecting the needs of industry and materials science researchers.