In a new technology effort to tackle postharvest losses caused by invasive pests, researchers at the University of Kentucky, led by Alfadhl Y. Khaled, Nader Ekramirad, Kevin D. Donohue, et al., have unveiled a research study utilizing non-destructive hyperspectral imaging and machine learning to predict and manage the physicochemical quality attributes of apples during storage, specifically addressing the impact of codling moth infestation. The study, titled "Non-Destructive Hyperspectral Imaging and Machine Learning-Based Predictive Models for Physicochemical Quality Attributes of Apples during Storage as Affected by Codling Moth," was published in the journal Agriculture (Volume 13, Issue 5) (1).
As the demand for high-quality apples persists globally, challenges arise in preserving fruit quality during long-term storage, especially in the face of invasive pests such as the codling moth (CM). This study focused on Gala apples, evaluating their firmness, pH, moisture content (MC), and soluble solids content (SSC) under different storage conditions.
The research employed near-infrared hyperspectral imaging (HSI) and machine learning models, utilizing partial least squares regression (PLSR) and support vector regression (SVR) methods. Data preprocessing involved Savitzky–Golay smoothing filters and standard normal variate (SNV), followed by outlier removal using the Monte Carlo sampling method. The study revealed significant effects of CM infestation on near-infrared (NIR) spectra, showcasing the potential impact of pests on apple quality.
Results indicated highly accurate predictive models for apple quality attributes during storage at different temperatures (0 °C, 4 °C, and 10 °C), with maximum correlation coefficients of prediction (Rp) reaching 0.97 for pH, 0.95 for firmness, 0.92 for SSC, and 0.91 for MC. Additionally, the study employed the competitive adaptive reweighted sampling (CARS) method to extract effective wavelengths, enhancing real-time prediction capabilities (1).
The multispectral models derived from this approach demonstrated superior performance compared to full-wavelength HSI models, showcasing the potential for fast, real-time prediction of apple quality characteristics (1).
This new study opens avenues for the development of non-destructive monitoring and evaluation systems, offering valuable insights for the apple industry to combat postharvest losses and ensure the delivery of high-quality produce to consumers.
(1) Khaled, A. Y.; Ekramirad, N.; Donohue, K. D., et al. Non-Destructive Hyperspectral Imaging and Machine Learning-Based Predictive Models for Physicochemical Quality Attributes of Apples during Storage as Affected by Codling Moth. Agriculture 2023, 13 (5), 1086. DOI: 10.3390/agriculture13051086
NIR Spectroscopy Explored as Sustainable Approach to Detecting Bovine Mastitis
April 23rd 2025A new study published in Applied Food Research demonstrates that near-infrared spectroscopy (NIRS) can effectively detect subclinical bovine mastitis in milk, offering a fast, non-invasive method to guide targeted antibiotic treatment and support sustainable dairy practices.
New AI Strategy for Mycotoxin Detection in Cereal Grains
April 21st 2025Researchers from Jiangsu University and Zhejiang University of Water Resources and Electric Power have developed a transfer learning approach that significantly enhances the accuracy and adaptability of NIR spectroscopy models for detecting mycotoxins in cereals.
New Raman Spectroscopy Method Enhances Real-Time Monitoring Across Fermentation Processes
April 15th 2025Researchers at Delft University of Technology have developed a novel method using single compound spectra to enhance the transferability and accuracy of Raman spectroscopy models for real-time fermentation monitoring.