Researchers from the University of Minnesota and Nanjing Agricultural University have highlighted the potential of deep learning to significantly improve the accuracy and robustness of fruit quality assessments using visible-near-infrared spectroscopy.
Assessing the quality of fruit has become significantly easier, thanks to the advancements made in visible–near infrared (vis-NIR) spectroscopy, according to a recent review article published in Trends in Food Science & Technology (1). The study, led by Jie Yang of the University of Minnesota Twin Cities and Nanjing Agricultural University, explores the ongoing advancements in the field, particularly focusing on the shift from traditional chemometric techniques to cutting-edge deep learning approaches.
Vis-NIR spectroscopy has been used extensively to evaluate fruit quality. This non-invasive technique allows for the assessment of various quality attributes, such as sugar content, acidity, and firmness, by analyzing the light reflected from fruit surfaces (1,2). The spectral data collected through this method can provide comprehensive insights into the internal quality of fruits, which is crucial for producers, retailers, and consumers alike (1).
However, one challenge of using vis-NIR spectroscopy is data variability. The reason why this is an issue is that biological differences among fruits, variations in instrumental settings, and fluctuating measurement conditions limit the applicability of chemometric models that are used to interpret the spectral data (1).
In this review article, Yang and colleagues show how researchers are beginning to shift away from conventional chemometric models, and instead looking at using deep learning techniques to help analyze the spectral data to better predict fruit quality. Chemometric techniques, which involve the application of mathematical and statistical methods to spectral data, have been widely used to build predictive models (1). These models have improved accuracy, but they often remain dependent on specific data sets and require extensive manual feature engineering, such as data preprocessing, to function effectively (1).
Deep learning has emerged as a powerful tool in various fields of science and technology, and researchers have recently applied it to food analysis applications. Unlike traditional chemometric techniques, deep learning models are capable of automatically extracting features from spectral data, reducing the need for manual intervention (1). This not only streamlines the modeling process, but it also enhances the generalizability of the models across different data sets (1).
Yang’s review highlights several advanced deep learning techniques that hold promise for improving the robustness of fruit quality assessments. Yang’s review focuses on four: transfer learning, multi-task learning, multi-modal data fusion, and knowledge-guided model design.
These four deep learning techniques have distinct advantages. Transfer learning, for example, allows models to leverage knowledge gained from one data set and apply it to another, thereby enhancing their adaptability (1). Multi-task learning enables models to perform multiple tasks simultaneously, improving their efficiency and accuracy (1). Multi-modal data fusion integrates data from various sources, providing a more comprehensive analysis of fruit quality (1). And finally, knowledge-guided model design incorporates domain-specific knowledge into the model-building process, further enhancing its relevance and accuracy (1).
Although these four deep learning techniques have attributes that give it significant potential to advance the field of fruit quality evaluation, more work is needed. The researchers stress that further research is needed to fully understand the applicability and limitations of these models (1). The integration of deep learning into existing chemometric frameworks could propel the field forward, offering more reliable and accurate assessments of fruit quality. However, challenges remain, particularly in ensuring that these models can effectively handle the variability inherent in spectral data (1).
By addressing the limitations of current methodologies and exploring new avenues in deep learning, the researchers believe that deep learning techniques can pave the way for more accurate and reliable assessments of fruit, which will benefit the food and agriculture industries.
(1) Zhang, X.; Yang, J. Advanced Chemometrics Toward Robust Spectral Analysis for Fruit Quality Evaluation. Trends Food Sci. Technol. 2024, 150, 104612. DOI: 10.1016/j.tifs.2024.104612
(2) Song, K.; Yu, D.; Yang, D. Study of Nondestructive Testing of Nanguo Pear Quality Using Vis-NIR Spectroscopy. Spectroscopy 2022, 37 (6), 26–32. DOI: 10.56530/spectroscopy.rc4873o1
New Spectroscopy Method Shows Promise for Detecting Olive Oil Fraud
November 12th 2024Researchers from the University of Cordoba have validated a novel spectroscopy technique to help distinguish between extra virgin and virgin olive oils. This approach could support existing panel-based tests, which are often slow, costly, and subjective, by providing a faster, non-destructive screening option.
New Magnetic Flow Device Speeds Up Detection of Lactic Acid Bacteria and Yeast in Fermentation
November 11th 2024Researchers at Henan Agricultural University have developed a multi-channel magnetic flow device combined with surface-enhanced Raman spectroscopy (SERS) for the rapid and precise isolation, identification, and quantification of lactic acid bacteria and yeast, revolutionizing quality control in fermented food production.
New Study Highlights Abnormal Connectivity in Prefrontal Cortex of MCI Patients
November 6th 2024A recent study published in Frontiers in Aging Neuroscience by Wenyu Jiang and colleagues in China found that patients with mild cognitive impairment (MCI) exhibit abnormal functional connectivity in the right prefrontal cortex as revealed by fNIRS, highlighting potential cognitive implications and the protective role of education.
Breaking Spectral Boundaries: New Ultrafast Spectrometer Expands Detection Range for NIR Studies
October 29th 2024A team from Auburn University has developed an innovative ultrabroadband near-infrared (NIR) transient absorption (TA) spectrometer capable of detecting across a wide spectral range of 900–2350 nm in a single experiment. This advancement improves the study of ultrafast processes in low-bandgap materials and opens doors to new insights in photochemistry and charge dynamics.
FT-NIR and Raman Spectroscopic Methods Enhance Food Quality Control
October 28th 2024A recent study showcases the potential of Fourier transform near-infrared (FT-NIR) spectroscopy and spatially offset Raman spectroscopy (SORS) in detecting raw material defects in hazelnuts caused by improper storage conditions. FT-NIR spectroscopy proved especially effective, while SORS offered complementary insights in certain scenarios. These spectroscopic methods could modernize the speed and accuracy of hazelnut inspections in the food industry.