Researcher holds a test tube with water in a hand in blue glove | Image Credit: © IVASHstudio - stock.adobe.com

In a new study published in Applied Spectroscopy on November 27, 2023, researchers from Beihang University in Beijing, China, have introduced a novel approach to real-time monitoring of surface water contamination. The article titled "Dynamic Multivariate Outlier Detection Algorithm Using Ultraviolet Visible Spectroscopy for Monitoring Surface Water Contamination With Hydrological Fluctuation in Real-Time" presents a dynamic multivariable outlier sampling rate detection (DM-SRD) algorithm, addressing key challenges in the detection of water contaminants.
Researcher holds a test tube with water in a hand in blue glove | Image Credit: © IVASHstudio - stock.adobe.com
Surface water contamination poses a significant threat to ecosystems and human health. Traditionally, ultraviolet-visible (UV-vis) spectroscopy has been a reliable method for water quality assessment. However, the ever-changing nature of surface water, influenced by factors such as rainfall and alterations in flow, introduces complexities in spectral characteristics over time. This dynamic environment often results in misinterpretation between hydrological fluctuation spectra and contaminated water spectra, leading to higher false alarm rates and missed detections.
The DM-SRD algorithm, proposed by the authors, offers a dynamic solution to these challenges. By incorporating a dynamic updating strategy, the algorithm enhances its adaptability to hydrological fluctuations, significantly reducing false alarms. Moreover, the integration of multiple outlier variables as outlying degree indicators improves the overall accuracy of contamination detection.
The efficacy of the DM-SRD method was rigorously tested through experiments utilizing spectra collected from real surface water sites with simulated hydrological fluctuations. Comparative analyses with static SRD methods and spectral matching techniques showcased the superiority of the DM-SRD algorithm. The results revealed an impressive accuracy rate of 97.8%, outperforming alternative detection methods while simultaneously minimizing false alarm rates and eliminating the risk of missing alarms (1).
One of the notable strengths of the DM-SRD algorithm is its exceptional adaptability and robustness. The research findings indicate that whether the database contains prior information on hydrological fluctuation or not, the DM-SRD method consistently maintained high detection accuracy. This adaptability underscores its potential for real-world applications, making it a game-changer in the field of water contamination monitoring.
As water quality continues to be a global concern, the DM-SRD algorithm's innovative approach promises to reshape the landscape of real-time surface water contamination detection, providing unparalleled accuracy and reliability. The research, available in the latest issue of Applied Spectroscopy, marks a significant leap forward in the ongoing efforts to safeguard water resources worldwide.
This article was written with the help of artificial intelligence and has been edited to ensure accuracy and clarity. You can read more about our policy for using AI here.
(1) Li, Q.; Shao, X.; Cui, H.; Wei, Y.; Shang, Y. Dynamic Multivariate Outlier Detection Algorithm Using Ultraviolet Visible Spectroscopy for Monitoring Surface Water Contamination With Hydrological Fluctuation in Real-Time. Appl. Spectrosc. 2023, November 27, DOI: 10.1177/00037028231206191
New Optical Formulae for Thin Films Boost Accuracy for Real-World Applications
June 2nd 2025Researchers from Northwestern University, University of Cádiz, and University of Arizona have developed new formulae for analyzing optical thin films that outperform traditional models by accounting for complex geometries and absorbing substrates. These advances offer more precise ultraviolet-visible-near-infrared (UV-vis-NIR) spectroscopic analysis of film materials used in critical modern technologies.
Bruce R. Kowalski: The Maverick Mind Behind Chemometrics
June 2nd 2025In this Icons of Spectroscopy article, Executive Editor Jerome Workman Jr. delves into the life and impact of Bruce Kowalski, an analytical chemist whose major contributions to chemometrics helped establish the field of applying advanced quantitative and qualitative mathematics to extract meaningful chemical information from complex datasets. Kowalski’s visionary approach to chemical data analysis, education, and software development has transformed the landscape of modern analytical chemistry for academia and industry.
Ancient Meteorite Reveals Space Weathering Secrets Through Cutting-Edge Spectroscopy
Published: May 27th 2025 | Updated: May 27th 2025Researchers in Rome used advanced spectroscopic techniques to probe the mineralogy of the CM2 carbonaceous chondrite NWA 12184. This revealed the effects of space weathering and provided insights into C-type asteroid evolution.
Real-Time Health Monitoring Using Smart Wearable Spectroscopy Sensors With AI
May 6th 2025A newly published review in the journal Advanced Materials explores how intelligent wearable sensors, powered by smart materials and machine learning, are changing healthcare into a decentralized, personalized, and predictive modeling system. An international team of researchers highlights emerging technologies that promise earlier diagnosis, improved therapy, and continuous health monitoring—anytime, anywhere.
AI and Satellite Spectroscopy Team Up to Monitor Urban River Pollution in China
April 30th 2025A study from Chinese researchers demonstrates how combining satellite imagery, land use data, and machine learning can improve pollution monitoring in fast-changing urban rivers. The study focuses on non-optically active pollutants in the Weihe River Basin and showcases promising results for remote, data-driven water quality assessments.