Dutch astronomers C.P. de Vries and E. Costantini, both of SRON/Utrecht University Netherlands, used the Reflection Grating Spectrometer onboard the XMM-Newton satellite to obtain high-quality X-ray spectra of Scorpius X-1, one of the brightest X-ray sources in the sky, located about 2800 parsecs from Earth.
Dutch astronomers C.P. de Vries and E. Costantini, both of SRON/Utrecht University Netherlands, used the Reflection Grating Spectrometer onboard the XMM-Newton satellite to obtain high-quality X-ray spectra of Scorpius X-1, one of the brightest X-ray sources in the sky, located about 2800 parsecs from Earth. For the first time, they have found clear evidence of an extended X-ray absorption fine structure (EXAFS) signature coming from the dust seen toward a celestial source.
EXAFS is a powerful tool for studying the grains in the interstellar medium. It is based upon the phenomenon that X-ray photons can eject electrons from atoms inside solid particles, which in turn can be backscattered onto the emitting atom by atoms in their immediate neighborhood. This causes characteristic sinusoidal absorption features in the X-ray spectrum of a distant source that depend on the structure of the absorbing solid material.
EXAFS has a major advantage over infrared (IR) spectroscopy, which can also be used to study crystalline dust, in that in can probe the solid matter along the line of sight at the level of the atomic structure. IR spectroscopy provides information at the mineralogical level. As a result, EXAFS gives a more detailed picture of the chemical composition and atomic structure of amorphous grains than is possible with IR spectroscopy.
AI and Satellite Spectroscopy Team Up to Monitor Urban River Pollution in China
April 30th 2025A study from Chinese researchers demonstrates how combining satellite imagery, land use data, and machine learning can improve pollution monitoring in fast-changing urban rivers. The study focuses on non-optically active pollutants in the Weihe River Basin and showcases promising results for remote, data-driven water quality assessments.
New Optical Modeling Method Advances Thin Film Analysis Using Spectroscopic Ellipsometry
April 30th 2025Researchers at Zhejiang University have developed an advanced optical modeling approach using spectroscopic ellipsometry, significantly enhancing the non-destructive analysis of amorphous silicon oxide thin films.