A new study published in Spectrochimica Acta Part B: Atomic Spectroscopy investigated the effects of heterogeneity, including grain size and mineralogical composition, on micro-beam X-ray fluorescence (XRF) scanning spectroscopy. XRF is a useful tool for environmental analysis, because of its high spatial resolution.
Lake Baikal
The study, led by Nagayoshi Katsuta, an associate professor at Gifu University in Japan, used binary powdered mixtures of ferric oxide (Fe2O3) in the calcium carbonate (CaCO3) or silicon dioxide (SiO2) matrix with nine grain size fractions, four Fe2O3 concentrations, and fine-grained sedimentary cores from Lake Baikal, a lake in south-east Siberia, for analysis. Grain size helps determine mechanical properties and corrosion behavior of materials.
The findings of the study demonstrate that iron (Fe) intensity decreases as grain size increases, but if the grain size is constant, its intensity has a linear relationship with the composition of Fe2O3. The experimental data were in good agreement with theoretical curves, which suggest that if a phase that contains fluorescent elements has narrow ranges of concentration and grain size, the micro-beam XRF spectroscopy enables highly precise calibration from the XRF intensity to element concentration.
The theoretical curves of the Lake Baikal sediment core suggest that the Fe intensity has about a 30% maximum difference in the median grain size range of 3.9–28.2 μm. This variation appears in a scatter of regression between Fe intensity and concentration, but it scarcely affected the XRF intensity variability of sediment composition.
The study provides valuable insights into heterogeneity effects on micro-beam XRF spectroscopy, which can be used to improve the accuracy and precision of elemental analysis in various fields, including earth and environmental sciences.
This article was written with the help of artificial intelligence and has been edited to ensure accuracy and clarity. You can read more about our policy for using AI here.
(1) Katsuta, N.; Umemura, A.; Naito, S.; et al. Heterogeneity Effects in Micro-Beam XRF Scanning Spectroscopy of Binary Powdered Mixtures and Lake Sediments. Spectrochim. Acta, Part B 2023, 210, 106817. DOI: 10.1016/j.sab.2023.106817
Raman Reveals Rare Ribbeck Meteorite Clues About Ancient Solar System
May 28th 2025A team of scientists in Poland has unveiled the first detailed structural and magnetic analysis of the Ribbeck meteorite, a recently recovered space rock classified as an aubrite. Using Raman spectroscopy, X-ray diffraction, and advanced magnetic testing, researchers revealed the meteorite's unique mineralogy and its connection to deep space conditions.
Multi-Analytical Study Reveals Complex History Behind Ancient Snake Motif in Argentine Rock Art
May 22nd 2025A recent study published in the Journal of Archaeological Science: Reports reveals that a multi-headed snake motif at Argentina's La Candelaria rock shelter was created through multiple painting events over time.
Using Spectroscopy to Understand Hawaii’s Hidden Geology
May 8th 2025Researchers from the University of Nevada, Reno, have conducted the most comprehensive subsurface analysis of Hawaiian shield basalts to date, using advanced spectroscopic and geochemical techniques to reveal short-lived hydrothermal alteration processes and establish a new foundation for future volcanic and geothermal studies.
AI Shakes Up Spectroscopy as New Tools Reveal the Secret Life of Molecules
April 14th 2025A leading-edge review led by researchers at Oak Ridge National Laboratory and MIT explores how artificial intelligence is revolutionizing the study of molecular vibrations and phonon dynamics. From infrared and Raman spectroscopy to neutron and X-ray scattering, AI is transforming how scientists interpret vibrational spectra and predict material behaviors.