Scientists from King Khalid University in Abha, Saudi Arabia and Al-Azhar University in Cairo, Egypt have created a fluorescence chemo sensor to selectively determine histamine in human plasma samples. Their work was published in Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy (1).
Doctor hand wearing blue gloves holding fresh frozen plasma bag in storage blood refrigerator at blood bank unit laboratory. Human plasma for covid-19 patients treatment | Image Credit: © arcyto - stock.adobe.com
Histamine can impact different physiological functions, such as acid secretion, neurotransmission, and immune responses, through H1, H2, H3, and H4 receptors. Histamine imbalances are linked to different pathological illnesses, such as autoimmune and inflammatory diseases. They can affect different processes, such as releasing stomach acid (H2 receptors), releasing neurotransmitters in the nervous system (H3 receptors), and affecting the contraction of smooth muscle (H1) receptors. These receptors are vital to understanding diseases, so monitoring and maintaining physiological balance in histamine production is essential.
In this study, scientists created a novel fluorescence chemo sensor to measure histamine in different forms. This detection method consists of detecting specific molecules or ions, generating a measurable signal in response. It is based on the phenomena of chemo sensors undergoing transformations upon interacting with the target compound.
Histamine quantification, when conducted in a plasma matrix, can be used to examine mass cell activation and differentiate between allergic reactions. The scientists created a fluorescent-based sensor for determine histamine in the human plasma matrix. The method was based on chemical transformation, turning histamine into N-(2-(1H-imidazol-4-yl) ethyl)-2-bromoacetamide, which is a fluorescent product that differs from normal histamine molecules.
The transformation itself involved chemical reactions between trimethylamine, with the final product becoming excited at 250 nm and emitting a signal at 340 nm. Using histamine determination, the scientists obtained significant concentration-dependent fluorescence enhancement. After the measurements, the procedures were examined with ICH M10 recommendations, to check the system’s accuracy, precision, selectivity, and robustness. Overall, the method showed a limit of quantification of 0.25 ng/mL and dynamic detection throughout a linearity range of 1–200 ng/mL, which allowed for accurate histamine assessment in the plasma matrix.
(1) Alqahtani, A.; Alqahtani, T.; Abdelazim, A. H. Development of Fluorescence Chemo Sensor for Selective Histamine Determination in Spiked Human Plasma Samples. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 308, 123711. DOI: https://doi.org/10.1016/j.saa.2023.123711
Evaluating Microplastic Detection with Fluorescence Microscopy and Raman Spectroscopy
July 2nd 2025A recent study presented a dual-method approach combining confocal micro-Raman spectroscopy and Nile Red-assisted fluorescence microscopy to enhance the accuracy and throughput of microplastics detection in environmental samples.
Tracking Molecular Transport in Chromatographic Particles with Single-Molecule Fluorescence Imaging
May 18th 2012An interview with Justin Cooper, winner of a 2011 FACSS Innovation Award. Part of a new podcast series presented in collaboration with the Federation of Analytical Chemistry and Spectroscopy Societies (FACSS), in connection with SciX 2012 ? the Great Scientific Exchange, the North American conference (39th Annual) of FACSS.
Fluorescence Emission and Raman Spectroscopy Offer Greater Insight into Poultry Meat Quality
June 19th 2025Researchers from the Institute of Agrifood Research and Technology (IRTA) in Catalunya, Spain used fluorescence and Raman spectroscopy to explore complex tissue changes behind wooden breast myopathy in chickens.
Machine Learning Accelerates Clinical Progress of SERS Technology
May 22nd 2025A new review in TrAC Trends in Analytical Chemistry by Alfred Chin Yen Tay and Liang Wang highlights how machine learning (ML) is transforming surface-enhanced Raman spectroscopy (SERS) into a powerful, clinically viable tool for rapid and accurate medical diagnostics.
Fluorescence Spectroscopy Emerges as Rapid Screening Tool for Groundwater Contamination in Denmark
May 21st 2025A study published in Chemosphere by researchers at the Technical University of Denmark demonstrates that fluorescence spectroscopy can serve as a rapid, on-site screening tool for detecting pharmaceutical contaminants in groundwater.