Machine learning and synchrotron radiation-based micro X-ray fluorescence imaging show promise for early cancer diagnostics by identifying trace biometals as potential cancer biomarkers. The research demonstrates the feasibility of using machine learning algorithms to analyze the spatial distribution of biometals and classify cancer pathogenesis stages, offering potential advancements in non-invasive cancer detection.
Trace biometals in biological samples have shown potential as cancer biomarkers, but their spatial analysis for early cancer diagnostics remains challenging. In a recent study lead by J. J. Okonda, and conducted at the Department of Physics at the University of Nairobi, researchers have explored the feasibility of utilizing machine learning and synchrotron radiation-based micro X-ray fluorescence imaging to detect trace biometals and identify their spatial distribution as cancer biomarkers. This research was published in the journal Spectrochimica Acta Part B: Atomic Spectroscopy (1).
Cancer detection and screening as a treatment for malignant cells with a biopsy or testing caused by carcinogens and genetics with a cancerous cell as an immunotherapy symbol | Image Credit: © freshidea - stock.adobe.com
The team employed principal component analysis (PCA)-enabled artificial neural networks (ANN) to simultaneously determine the spatial profiles of biometals, including manganese (Mn), iron (Fe), copper (Cu), and selenium (Se), in model human cell cultures (DU145 and Vero). By culturing the cell lines on silicon nitride membranes and performing micro X-ray fluorescence (micro XRF) analysis at the TwinMic beamline, Elletra synchrotron source, the researchers obtained high-resolution 2D maps of the trace biometals.
To analyze the complex multivariate relationships between the trace biometals spatial distribution and cancer pathogenesis stages, PCA was employed to reduce the data dimensions. The ANN model, trained using the pixel spectral profiles of the biometals, successfully classified the cell cultures into cancerous and healthy groups. Moreover, the selected spectral profiles enabled the ANN to classify cancerous cells into early, intermediate, and advanced stages based on the fluorescence lines of Fe and Cu, as well as Compton scatter.
The study demonstrated promising results, with high spatial correlations observed between Cu and Fe in cancerous cell cultures compared to normal ones. These findings pave the way for the early diagnosis of cancer by utilizing the alterations in the spatial distribution and multivariate properties of trace biometals as cancer biomarkers.
The integration of machine learning and synchrotron radiation-based micro X-ray fluorescence imaging offers a powerful tool for early cancer detection, providing valuable insights into the intricate relationships between trace biometals and cancer pathogenesis stages. This research contributes to the development of non-invasive and precise diagnostic techniques, bringing us closer to improved cancer management and patient outcomes.
(1) Okonda, J. J.; Angeyo, H. K.; Dehayem-Kamadjeu, A.; Rogena, A. E. Feasibility for early cancer diagnostics by machine learning enabled synchrotron radiation based micro X-ray fluorescence imaging of trace biometals as cancer biomarkers. Spectrochimica Acta Part B: At. Spectrosc. 2023, 204, 106671. DOI:10.1016/j.sab.2023.106671
Raman Reveals Rare Ribbeck Meteorite Clues About Ancient Solar System
May 28th 2025A team of scientists in Poland has unveiled the first detailed structural and magnetic analysis of the Ribbeck meteorite, a recently recovered space rock classified as an aubrite. Using Raman spectroscopy, X-ray diffraction, and advanced magnetic testing, researchers revealed the meteorite's unique mineralogy and its connection to deep space conditions.
Multi-Analytical Study Reveals Complex History Behind Ancient Snake Motif in Argentine Rock Art
May 22nd 2025A recent study published in the Journal of Archaeological Science: Reports reveals that a multi-headed snake motif at Argentina's La Candelaria rock shelter was created through multiple painting events over time.
Using Spectroscopy to Understand Hawaii’s Hidden Geology
May 8th 2025Researchers from the University of Nevada, Reno, have conducted the most comprehensive subsurface analysis of Hawaiian shield basalts to date, using advanced spectroscopic and geochemical techniques to reveal short-lived hydrothermal alteration processes and establish a new foundation for future volcanic and geothermal studies.
AI Shakes Up Spectroscopy as New Tools Reveal the Secret Life of Molecules
April 14th 2025A leading-edge review led by researchers at Oak Ridge National Laboratory and MIT explores how artificial intelligence is revolutionizing the study of molecular vibrations and phonon dynamics. From infrared and Raman spectroscopy to neutron and X-ray scattering, AI is transforming how scientists interpret vibrational spectra and predict material behaviors.