Researchers at the Kansas State University Agricultural Experiment Station and Cooperative Extension Service (Manhattan, Kansas) conducted a pilot study at a commercial feedyard in which they used near-infrared spectroscopy to identify cattle with undifferentiated bovine respiratory disease (BRD), a leading cause of post-weaning bovine illness and death.
Researchers at the Kansas State University Agricultural Experiment Station and Cooperative Extension Service (Manhattan, Kansas) conducted a pilot study at a commercial feedyard in which they used near-infrared spectroscopy to identify cattle with undifferentiated bovine respiratory disease (BRD), a leading cause of post-weaning bovine illness and death.
Pulse oximetry has been used with cattle to detect decreased arterial oxygen levels in animals with respiratory disease, but it has limitations due to varied responses caused by different hide colors and probe placement. Near-infrared spectroscopy is a noninvasive technique that measures the tissue saturation of oxygen and is not limited by the color of the hide or other factors that limit pulse oximetry. In humans, it is used to evaluate compartmental syndrome, exercise tolerance, and peripheral vascular disease.
Wavelengths of 650 nm and 810 nm were used to illuminate the tissue beneath the skin and determine the amount of oxygen attached to hemoglobin in the arterioles, venules, and capillaries. Unabsorbed light is analyzed to produce a ratio of oxygenated hemoglobin to total hemoglobin. These values were comparable to arterial blood gas values obtained in the same animal when the measurement was taken directly over an artery.
More details from the study can be found at http://www.cattlenetwork.com/Content.asp?ContentID=334300.
New AI-Powered Raman Spectroscopy Method Enables Rapid Drug Detection in Blood
February 10th 2025Scientists from China and Finland have developed an advanced method for detecting cardiovascular drugs in blood using surface-enhanced Raman spectroscopy (SERS) and artificial intelligence (AI). This innovative approach, which employs "molecular hooks" to selectively capture drug molecules, enables rapid and precise analysis, offering a potential advance for real-time clinical diagnostics.
Detection of Microplastics in Bottled Water Using Raman Microspectroscopy
February 10th 2025Spectroscopy sat down with Oskar Hagelskjaer, Founder and CEO of Microplastic Solution, to discuss his latest study whose findings challenge EU Directive 2020/2184 regarding microplastic detection in potable water.
Best of the Week: Interview with Juergen Popp, Microplastic Detection, Machine Learning Models
February 7th 2025Top articles published this week include a video interview that explores using label-free spectroscopic techniques for tumor classification, an interview discussing how near-infrared (NIR) spectroscopy can classify different types of horsetails, and a news article about detecting colorless microplastics (MPs) using NIR spectroscopy and machine learning (ML).
Enhancing Tumor Classification with AI and Raman: A Conversation with Juergen Popp
February 7th 2025Spectroscopy sat down with Juergen Popp of the Leibniz Institute for Photonic Technology to talk about the Photonics West Conference, as well as his work using label-free spectroscopy techniques for precise tumor margin control.