All PublicationsSpectroscopySpectroscopy SupplementsApplication NotebookE-Books
All ColumnsAtomic PerspectivesChemometrics in SpectroscopyFocus on QualityIR Spectral Interpretation WorkshopIcons of SpectroscopyLasers and Optics InterfaceMolecular Spectroscopy Workbench
All NewsInterviewsSpectroscopy Sponsored News
All Application NotesAtomic SpectroscopyGeneralMass SpectrometryMolecular Spectroscopy
Conference CoverageConference Listing
Webcasts
ProductsE-BooksEventsPeer ExchangeAnalytically Speaking PodcastSponsored PodcastsSpecTubeSponsored ContentSponsored VideosAsk the ExpertsContent Engagement HubsInteractive Tools
SubscribeDirectory
Analytical Instrumentation
Analytical Method Validation
Analytical Theory
Annual Salary Survey
Atomic Absorption
Atomic Spectroscopy
Biological, Medical, and Clinical Analysis
Biopharmaceuticals Biotechnology and Protein Analysis
Cannabis Analysis
Corporate Profiles
Data Analytics, Statistics, Chemometrics, and Artificial Intelligence
Dietary Supplements Analysis
Energy, Petroleum, and Bio Energy
Environmental Analysis
Far-IR/Terahertz Spectroscopy
Fluorescence
Food and Beverage Analysis
Forensics, Narcotics
GC-MS
Homeland Security
ICP-MS
ICP-OES
Imaging
Infrared (IR) Spectroscopy
LC-MS
LIBS
Lasers and Laser-Source Technologies
Market Profiles
Mass Spectrometry
Molecular Spectroscopy
NMR
Near Infrared (NIR) Spectroscopy
Optics
Peer-reviewed Articles
Pharmaceutical Analysis
Plastics Polymers and Rubber
Portable and Handheld Spectroscopy
Process Control and Analysis
Quality Control/Quality Assurance (QA/QC)
Quality by Design (QbD)
Raman Spectroscopy
Regulatory Standards/GLP/GMP Compliance
Sample Preparation
Spectroscopy Interviews
Surface-enhanced Raman spectroscopy (SERS)
Technology Forum
Trends
Tutorials
UV-vis Spectroscopy
Vendor Tips & Tricks
Web of Science
X-ray Analysis
Spotlight -
  • Sulfur Analysis of Petrochemicals
  • ICP-MS Instrument Throughput
  • Food Lab Insights
IS1
  • Applied Clinical Trials

  • BioPharm International

  • Cannabis Science and Technology

  • Chromatography Online

  • Nutritional Outlook

  • Pharmaceutical Commerce

  • Pharmaceutical Executive

  • Pharm Tech

  • Spectroscopy Online

  • Turbo Machinery Magazine

Analytical Instrumentation
Analytical Method Validation
Analytical Theory
Annual Salary Survey
Atomic Absorption
Atomic Spectroscopy
Biological, Medical, and Clinical Analysis
Biopharmaceuticals Biotechnology and Protein Analysis
Cannabis Analysis
Corporate Profiles
Data Analytics, Statistics, Chemometrics, and Artificial Intelligence
Dietary Supplements Analysis
Energy, Petroleum, and Bio Energy
Environmental Analysis
Far-IR/Terahertz Spectroscopy
Fluorescence
Food and Beverage Analysis
Forensics, Narcotics
GC-MS
Homeland Security
ICP-MS
ICP-OES
Imaging
Infrared (IR) Spectroscopy
LC-MS
LIBS
Lasers and Laser-Source Technologies
Market Profiles
Mass Spectrometry
Molecular Spectroscopy
NMR
Near Infrared (NIR) Spectroscopy
Optics
Peer-reviewed Articles
Pharmaceutical Analysis
Plastics Polymers and Rubber
Portable and Handheld Spectroscopy
Process Control and Analysis
Quality Control/Quality Assurance (QA/QC)
Quality by Design (QbD)
Raman Spectroscopy
Regulatory Standards/GLP/GMP Compliance
Sample Preparation
Spectroscopy Interviews
Surface-enhanced Raman spectroscopy (SERS)
Technology Forum
Trends
Tutorials
UV-vis Spectroscopy
Vendor Tips & Tricks
Web of Science
X-ray Analysis
IS1
  • Applied Clinical Trials

  • BioPharm International

  • Cannabis Science and Technology

  • Chromatography Online

  • Nutritional Outlook

  • Pharmaceutical Commerce

  • Pharmaceutical Executive

  • Pharm Tech

  • Spectroscopy Online

  • Turbo Machinery Magazine

    • Webcasts
    • Subscribe
    • Directory
Advertisement

New Trends in ICP-MS: On the Way from Single Cell to Single Protein Detection

June 1, 2020
By Norbert Jakubowski
Article

Spectroscopy

SpectroscopySpectroscopy-06-01-2020
Volume 35
Issue 6
Pages: 21–23

In celebration of Spectroscopy’s 35th Anniversary, leading experts discuss important issues and challenges in analytical spectroscopy.

Inductively coupled plasma–mass spectrometry (ICP-MS) is already often applied to single-cell analysis in various applications. For this purpose, a time-gated detection mode with short integration times is used, an approach that is used in the well-established single particle (SP) mode for detection of single metallic nanoparticles (NPs). For detection of single cells, this measuring mode is given the name single cell (SC) mode (see more details at [1,2]). This relatively new method is used directly to detect toxic or essential metals and hetero-elements in biomolecules, metal-containing pharmaceuticals, or NPs in single cells. With conventional ICP-MS instruments, the number of elements that can be detected is limited because of the short integration time, of a few milliseconds, so that mainly just a single isotope can be detected. Therefore, for multielement analysis of single cells at short integration times, time-of-flight (TOF) mass spectrometers are better suited for detection and the first examples have been published (3). In contrast to direct metal detection, however, the detection of metals in metal-tagged antibodies is even more frequently applied. Historically, the state-of-the-art method for characterizing proteins (biomarkers) or cell receptors of many cells individually has been flow cytometry with fluorescence detection (4). But if multiple parameters must be analyzed simultaneously, this optical method is limited in the number of applicable fluorescence colors by spectral overlap, fluorescence dye quenching, and autofluorescence of the sample itself. Therefore, a novel high-throughput technique for real-time analysis of multi-parameter assays of single cells based on ICP-TOF-MS (known as CyTOF) was developed by Scott D. Tanner and colleagues (and is now commercially available by the company Fluidigm), which is known as mass cytometry (MC) (5). In this method, antibodies are bioconjugated with metal tags (for more details about the history, chemistry, and applications of mass cytometry, see [6–8]) and are applied to detection of cells suspended in a buffer solution. The cell suspension is introduced into the CyTOF-MS by a pneumatic nebulizer. More recently, a laser ablation (LA) system was coupled to CyTOF-MS devices and this new application was given the name imaging mass cytometry (more details are given in [9]) although it is nothing other than conventional LA-ICP-MS but with cellular lateral resolution. 

For metal tagging of antibodies polymer tags have been developed carrying chelating compounds that can be loaded with enriched isotopes of the rare earth elements (REE) (10). These elements are exclusively applied in mass cytometry because of their similar chemistry and presently up to 40 single and enriched isotopes can be used in a single assay, so that a multiparametric analysis is possible. The sensitivity of the assay is directly proportional to the number of atoms covalently attached to the antibody, resulting in a signal amplification for each antibody by a factor from 20 to 100. Given the fact that each single target cell might have thousands of receptors (proteins embedded in a cell membrane) on the cell surface to which these antibodies can bind, an additional signal amplification for each cell can be expected, so that in total currently the amplification factor is in the range of 105 and this allows detection of the most abundant biomarkers.

However, the number of proteins in a cell ranges from 106 down to about a hundred for less-abundant proteins. For the detection of these less-abundant proteins in a single cell assay, much higher degrees of tagging are required. Metallic nanoparticles (with diameters of around 50 nm) contain many millions of atoms and have been used for tagging antibodies successfully and were used successfully, for instance, in secondary electron microscopy. However, the application of this approach in immunoassays for ICP-MS detection is still advancing only slowly, although a gain proportional to the number of atoms in the nanoparticle looks very promising. If such a gain were realized for mass spectrometry, then this will definitely cause another revolution in all bio-related sciences very similar to the quantum jump initiated by the polymerase chain reaction (PCR) with real-time PCR, which excels by an amplification factor of more than a million for DNA detection (11). Such a gain would be desirable for fundamental quantitative proteomics as well as for detection of novel, less-abundant biomarkers (proteins) for many different diseases and would enable easy personalized diagnosis at tolerable costs. 

A first example of this was published by Cruz-Alonso and associates, who studied the function of metallothionein (MT) during oxidative stress in the human eye (12). They used primary antibodies directed against MT 1/2 and MT 3 which were tagged by Au clusters containing more than 500 atoms of Au. This tagging resulted in a significant signal improvement, such that MTs could be detected even in different layers of tissue with high lateral resolution. In the work of Drescher and associates, the authors were able to detect single Au and Ag NPs in single fibroblast cells using LA-ICP-MS for single cell imaging (13). Therefore, Tvrdonova and associates used antibodies bioconjugated with gold nanoparticles (AuNPs) with diameters from 10 to 60 nm for detection of immunoglobulins by LA-ICP-MS (14). Dot blot experiments were performed to demonstrate that the binding capability of the antibody was not compromised by such a large particle.

So far, both examples show that tagging of antibodies by NPs is in general possible without compromising the binding capability of the antibody, but single metal NPs do not allow multiparametric detection in mass cytometry. However, reproducible production of NPs directly from REEs is quite challenging. Therefore, Scharlach and associates used very small iron oxide nanoparticles (VSOP) with a diameter of only 6.6 nm (measured by transmission electron microscopy) that is synthesized by a precipitation reaction (15). They added europium, an element of the REE group, to the precipitation solution and ~30 europium atoms per particle were doped into the VSOP bulk containing 4500 iron atoms. Because of the similar chemistry of all REEs, even larger NPs can be synthesized using modified reaction conditions and alternative REE elements soluble in the reaction solution can be incorporated so that the number of distinguishable tags can be increased significantly, to enable multiplex or multiparametric assays in mass cytometry.

The same idea was followed by Grunert and associates, who developed a simple solvothermal synthesis of Eu3+-doped gadolinium orthovanadate nanocrystals (Eu:GdVO4) that already contained two different lanthanides, for multimodal applications (16). The Eu3+ doping of the vanadate matrix provides red photoluminescence after illumination with ultraviolet (UV) light so that NPs in cells can be localized by optical microscopy. Gd3+ ions in the nanocrystals reduce the T1 relaxation time of surrounding water protons at the surface of the crystals, allowing these nanocrystals to act as a positive magnetic resonance imaging (MRI) contrast agent as well. Synthesis resulted in polycrystalline nanocrystals with a crystal size of 36.7 nm. The nontoxic nanocrystals were subsequently used for intracellular labeling of both human adipose-derived stem cells and adenocarcinomas human alveolar basal epithelial (A549) cells and imaged in the cells by LA-ICP-MS, MRI, and fluorescence detection. Thus,  these crystals look very promising for application in mass cytometry and multimodal spectroscopies.

Pichaandi and coworkers used a similar idea to develop REE-doped NPs for the tagging antibodies in mass cytometry (17). They examined the use of silica-coated NaHoF4 NPs (with an ~12 nm core diameter and a 5 nm silica shell) as a model for coprecipitation of REE in a host matrix. They compared the sensitivity of NP–antibody conjugates to polymer–antibody conjugates toward seven biomarkers with varying expression levels across six different cell lines; a very promising 30 to 450-fold signal enhancement was seen for the NP-based reagent, which contained only 12.000 Ho atoms per NP.

A very new signal amplification strategy was also demonstrated by Yuan and associates (18). They constructed an element-tagged virus-like nanoparticle (VLNP) with a precise number of atoms. The VLNP was applied as a membrane-specific cell biomarker that provided additional amplification because many VLNPs were able to bind to the cell membrane, which resulted in significantly higher sensitivity in a cell counting system using ICP-MS. With this approach, signal amplification of more than two orders of magnitude was achieved. In this example a VLNP was used as a metal-tagged probe, but in principle detection of viruses (such as COVID-19) itself could become possible if adequate and specific antibodies are available. 

All the examples mentioned are proof-of-principle experiments only; in the future, it must be demonstrated that they can be applied in complex biological systems. Nevertheless, the application of NPs for metal-tagging looks promising for detection of less-abundant proteins, and this author is convinced that in the very near future, routine single-protein detection of even less abundant biomarkers by ICP-MS and CyTOF-technologies will become possible, revolutionizing analytical proteomics and medical diagnosis.

We never thought, during the past 35 years of reading this journal, that inorganic mass spectrometry (ICP-MS) would become an important analytical method for medical research and diagnosis to improve, ensure and preserve our future health! Stay healthy! 

References

1.    L. Mueller, H. Traub, N. Jakubowski, D. Drescher, V. I Baranov, and J. Kneipp, Anal. Chem. 10, 6963–6977 (2014).

2.    H. Wang, M. He, B. Chen, and B. Hu, J. Anal. At. Spectrom. 32, 1650–1659 (2017).

3.    K. Löhr, O. Borovinskaya, G. Tourniaire, U. Panne, and N. Jakubowski, Anal. Chem. 91, 11520–11528 (2019).

4.    J. Picot, C.L. Guerin, C. Le Van Kim, and C.M. Boulanger, Cytotechnology 64, 109–130 (2012).

5.    S.D. Tanner, D. Bandura, O. Ornatsky, V. Baranov, M. Nitz, and M.A. Winnik, Pure Appl. Chem. 80, 2627–2641 (2008).

6.    M.H. Spitzer and G.P. Nolan, Cell 165, 780–791 (2016).

7.    C. Giesen, L.Waentig, U. Panne, and N. Jakubowski, Spectrochim. Acta, Part B 76, 27–39 (2012).

8.    G. Schwarz, L. Müller, S. Beck, and M. W. Linscheid, J. Anal. At. Spectrom. 29, 221–233 (2014).

9.     Q. Chang, O. I. Ornatsky, I. Siddiqui, A. Loboda, V.I. Baranov, and D.W. Hedley, Cytometry Part A 91, 160–169 (2017).

10. X. D. Lou, G. H. Zhang, I. Herrera, R. Kinach, O. Ornatsky, V. Baranov, M. Nitz, and M. A. Winnik, Angew. Chem. Int. Ed. 46, 6111–6114 (2007).

11. R. Saiki, S. Scharf, F. Faloona, K. Mullis, G. Horn, H. Erlich, and N. Arnheim, Science 230, 1350–1354 (1985).

12. M. Cruz-Alonso, B. Fernandez, L. Álvarez, H. González-Iglesias, H. Traub, N. Jakubowski, and R. Pereiro, Microchimica Acta 185, 64–72 (2017).

13. D. Drescher, C. Giesen, H. Traub, U. Panne, J. Kneipp, and N. Jakubowski, Anal. Chem. 84, 9684–9688 (2012).

14. M. Tvrdonova, M. Vlcnovska, L. Pompeiano Vanickova, V. Kanicky, V. Adam, L. Ascher, N. Jakubowski, M. Vaculovicova, and T. Vaculovic, Anal. Bioanal. Chem. 411, 1–6 (2018).

15. C. Scharlach, L. Mueller, S. Wagner, Y. Kobayashi, H. Kratz, M. Ebert, N. Jakubowski, and E. Schellenberger, J. Biomed. Nanotech. 12, 1001–1010 (2016).

16. B. Grunert, J. Saatz, K. Hoffmann, F. Appler, D. Lubjuhn, N. Jakubowski, U. Resch-Genger, F. Emmerling, and A. Briel, ACS Biomater. Sci. Eng. 4, 3578–3587 (2018).

17. J. Pichaandi, G. Zhao, A. Bouzekri, E. Lu, O. Ornatsky, V. Baranov, M. Nitz, and M.A. Winnik, Chem. Science 10, 2965–2974 (2019).

18. R. Yuan, F. Ge, Y. Liang, Y. Zhou, L. Yang, and Q. Wang, Anal. Chem. 91, 4948–4952 (2019).

Norbert Jakubowski is the former Head of Division at the German Federal Institute for Materials Research and Testing (BAM) and is currently a consultant with Spetec GmbH, in Erding, Germany. Direct correspondence to norbi.jakubowski@gmail.com

Download Issue PDF
Articles in this issue

Vol 35 No 6 Spectroscopy June 2020 Regular Issue PDF
Laura Bush headshot_web.jpg
Celebrating 35 Years of Spectroscopy
Zac Schultz _web.jpg
Rise of the Machines: SERS Instrumentation and Machine Learning Enabling Complex Bioanalysis
Robert Hannah_web.jpg
Should the Past Define the Future of Interpretation of Infrared and Raman Spectra?
Mun Seok Jeong_web.jpg
Evolution and Future of Raman Spectroscopy: Tip-Enhanced Raman Spectroscopy
fig1L.jpg
Handheld Near-Infrared Spectrometers: Reality and Empty Promises
John Olesik_web.jpg
ICP-OES Capabilities, Developments, Limitations, and Any Potential Challengers?
Norbert Jakubowski_web.jpg
New Trends in ICP-MS: On the Way from Single Cell to Single Protein Detection
fig1L1592411052454.jpg
One Real Challenge That Still Remains in Applied Chemometrics
fig1L-1.jpg
Optical Molecular Spectroscopy in Combination with Artificial Intelligence for Process Analytical Technology
fig1L-11592423609252.jpg
Far-Ultraviolet Spectroscopy
Jose M Costa_web.jpg
Nanoparticle-Assisted Analytical Strategies: Pushing the Limits of ICP-MS for Ultrasensitive Detection of Clinical Biomarkers
Dmitry Kurouski_web.jpg
A Spectroscopic Revolution in the Agricultural World
fig1L.jpg
Raman Spectroscopy is Solving the Perpetual Problem of CSI: The Time of a Crime
Duncan Graham_web.jpg
Can Raman Spectroscopy Be a Useful Tool in the Fight Against COVID-19?
Recent Videos
Robert Jones speaks to Spectroscopy about his work at the CDC. | Photo Credit: © Will Wetzel
John Burgener | Photo Credit: © Will Wetzel
Robert Jones speaks to Spectroscopy about his work at the CDC. | Photo Credit: © Will Wetzel
John Burgener of Burgener Research Inc.
Related Content

James Harrington (right) and Donna Seibert (left), authors of this study. | Image Credit: © James Harrington and Donna Seibert

How Do We Improve Elemental Impurity Analysis in Pharmaceutical Quality Control?

Will Wetzel
May 16th 2025
Article

In this final part of our conversation with Harrington and Seibert, they discuss the main challenges that they encountered in their study and how we can improve elemental impurity analysis in pharmaceutical quality control.


James Harrington (right) and Donna Seibert (left), authors of this study. | Image Credit: © James Harrington and Donna Seibert

What Preparation Method is Better for Elemental Impurity Analysis, Exhaustive Extraction or Total Digestion?

Will Wetzel
May 15th 2025
Article

In Part II of our conversation with James Harrington of RTI International in Research Triangle Park, North Carolina, who was the lead author of this study, as well as coauthor Donna Seibert of Kalamazoo, Michigan, they talk about the reproducibility for Hg and V, as well as the ICP-MS and XRF results compare to one another.


Graphical representation of air quality index and monitoring © stokkete-chronicles-stock.adobe.com

High-Speed Laser MS for Precise, Prep-Free Environmental Particle Tracking

Jerome Workman, Jr.
April 21st 2025
Article

Scientists at Oak Ridge National Laboratory have demonstrated that a fast, laser-based mass spectrometry method—LA-ICP-TOF-MS—can accurately detect and identify airborne environmental particles, including toxic metal particles like ruthenium, without the need for complex sample preparation. The work offers a breakthrough in rapid, high-resolution analysis of environmental pollutants.


Lithium ion battery showing lithium ion cells on the table. Generated with AI. | Image Credit: © Alpa - stock.adobe.com

Benefits of ICP-MS for the Elemental Compositional Analysis of Lithium-Ion Battery Electrolytes

Aimei Zou
March 19th 2025
Article

This month’s column investigates the elemental composition of electrolytes in lithium-ion batteries (LIBs) using inductively coupled plasma–mass spectrometry (ICP-MS).


Acute lymphoblastic leukemia ALL is a type of blood cancer that occurs when the bone marrow produces too many abnormal lymphocytes, a type of white blood cell. Generated with AI. | Image Credit: © Thipphaphone - stock.adobe.com

Piezo-Driven Microdroplet Generator Enhances ICP-MS Accuracy

Will Wetzel
January 28th 2025
Article

A recent study from Chiba University examined a new way to improve single-cell inductively coupled plasma–mass spectrometry (scICP-MS).


Future looking alternative energy technology concept with a digital lithium ion rechargeable battery symbol and a high voltage charging energy storage icon with bright blue neon lightning particles. Generated by AI. | Image Credit: © AkuAku - stock.adobe.com

Analysis of Deposition Patterns and Influencing Factors of Lithium and Transition Metals Deposited on Lithium Ion Battery Graphitic Anodes by LA-ICP-MS

Patrick Harte;Martin Winter;Simon Wiemers-Meyer;Sascha Nowak
January 26th 2025
Article

A comprehensive understanding of aging phenomena and the resulting performance loss occurring in lithium-ion batteries (LIBs) is essential for ongoing improvement of the technology. The formation of a uniform solid electrolyte interphase (SEI) is of crucial importance for the performance, lifetime, and safety of LIBs. Transition metal dissolution (TMD), caused by degradation of the cathode, and subsequent TM deposition on the anode surface can deteriorate the protective properties of the SEI, possibly leading to reconstruction of the SEI and loss of active lithium. We explore this topic here.

Related Content

James Harrington (right) and Donna Seibert (left), authors of this study. | Image Credit: © James Harrington and Donna Seibert

How Do We Improve Elemental Impurity Analysis in Pharmaceutical Quality Control?

Will Wetzel
May 16th 2025
Article

In this final part of our conversation with Harrington and Seibert, they discuss the main challenges that they encountered in their study and how we can improve elemental impurity analysis in pharmaceutical quality control.


James Harrington (right) and Donna Seibert (left), authors of this study. | Image Credit: © James Harrington and Donna Seibert

What Preparation Method is Better for Elemental Impurity Analysis, Exhaustive Extraction or Total Digestion?

Will Wetzel
May 15th 2025
Article

In Part II of our conversation with James Harrington of RTI International in Research Triangle Park, North Carolina, who was the lead author of this study, as well as coauthor Donna Seibert of Kalamazoo, Michigan, they talk about the reproducibility for Hg and V, as well as the ICP-MS and XRF results compare to one another.


Graphical representation of air quality index and monitoring © stokkete-chronicles-stock.adobe.com

High-Speed Laser MS for Precise, Prep-Free Environmental Particle Tracking

Jerome Workman, Jr.
April 21st 2025
Article

Scientists at Oak Ridge National Laboratory have demonstrated that a fast, laser-based mass spectrometry method—LA-ICP-TOF-MS—can accurately detect and identify airborne environmental particles, including toxic metal particles like ruthenium, without the need for complex sample preparation. The work offers a breakthrough in rapid, high-resolution analysis of environmental pollutants.


Lithium ion battery showing lithium ion cells on the table. Generated with AI. | Image Credit: © Alpa - stock.adobe.com

Benefits of ICP-MS for the Elemental Compositional Analysis of Lithium-Ion Battery Electrolytes

Aimei Zou
March 19th 2025
Article

This month’s column investigates the elemental composition of electrolytes in lithium-ion batteries (LIBs) using inductively coupled plasma–mass spectrometry (ICP-MS).


Acute lymphoblastic leukemia ALL is a type of blood cancer that occurs when the bone marrow produces too many abnormal lymphocytes, a type of white blood cell. Generated with AI. | Image Credit: © Thipphaphone - stock.adobe.com

Piezo-Driven Microdroplet Generator Enhances ICP-MS Accuracy

Will Wetzel
January 28th 2025
Article

A recent study from Chiba University examined a new way to improve single-cell inductively coupled plasma–mass spectrometry (scICP-MS).


Future looking alternative energy technology concept with a digital lithium ion rechargeable battery symbol and a high voltage charging energy storage icon with bright blue neon lightning particles. Generated by AI. | Image Credit: © AkuAku - stock.adobe.com

Analysis of Deposition Patterns and Influencing Factors of Lithium and Transition Metals Deposited on Lithium Ion Battery Graphitic Anodes by LA-ICP-MS

Patrick Harte;Martin Winter;Simon Wiemers-Meyer;Sascha Nowak
January 26th 2025
Article

A comprehensive understanding of aging phenomena and the resulting performance loss occurring in lithium-ion batteries (LIBs) is essential for ongoing improvement of the technology. The formation of a uniform solid electrolyte interphase (SEI) is of crucial importance for the performance, lifetime, and safety of LIBs. Transition metal dissolution (TMD), caused by degradation of the cathode, and subsequent TM deposition on the anode surface can deteriorate the protective properties of the SEI, possibly leading to reconstruction of the SEI and loss of active lithium. We explore this topic here.

About
Advertise
Author Guidelines
Contact Us
Editorial Advisory Board
Ethics Statement
Do Not Sell My Personal Info
Permissions
Privacy Policy
Subscriptions
Terms and Conditions
Contact Info

2 Commerce Drive
Cranbury, NJ 08512

609-716-7777

© 2025 MJH Life Sciences

All rights reserved.