On February 25, Juergen Popp of the Leibniz Institute of Photonic Technology held a presentation at Pittcon in San Diego, California about how artificial intelligence (AI) can aid scientists in the tumor removal processes.
Extended Endoscopic removal of stones from the kidneys and ureter. 3d illustration | Image Credit: © Crystal light - stock.adobe.com
Intraoperative tumor resection is a commonly used tumor removal process that is supported by different examinations of said tumor, whether it be endoscopic, microscopic, or robotic-assisted examination. However, this approach does not enable precise tumor border definition, which can lead to incomplete removals and put patients at risk. According to Popp, biophotonic imaging can help to address this issue, since it can help provide morphological and molecular information on tumors. As part of this study, Popp and his team investigated how novel multimodal label-free spectroscopic instrumentation worked in combination with different AI approaches. The imaging technology was used to visualize tissue morphology and molecular structures, while AI-based image analysis approaches was used to automatically analyze the multimodal images into diagnostic information.
According to Popp, taking full advantage of these imaging approaches would involve implementing spectroscopic-guided femtosecond ablation, using it to seek and treat tumors (1). To this end, the scientists will soon introduce a nonlinear microendoscope that can ablate biological tissue with femtosecond lasers. AI approaches combined with fs-laser ablations will interact will open new ways for intraoperative and histopathological tumor analysis and selective removals, Popp said.
(1) Popp, J. Artificial Intelligence Driven Multimodal Imaging for Tumor Diagnosis and Therapy. Pittcon and The Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy, Inc. 2024. https://labscievents.pittcon.org/event/pittcon-2024/planning/UGxhbm5pbmdfMTc3MjMzOQ== (accessed 2024-2-21)
Machine Learning Accelerates Clinical Progress of SERS Technology
May 22nd 2025A new review in TrAC Trends in Analytical Chemistry by Alfred Chin Yen Tay and Liang Wang highlights how machine learning (ML) is transforming surface-enhanced Raman spectroscopy (SERS) into a powerful, clinically viable tool for rapid and accurate medical diagnostics.
New Deep Learning AI Tool Decodes Minerals with Raman Spectroscopy
May 21st 2025Researchers have developed a powerful deep learning model that automates the identification of minerals using Raman spectroscopy, offering faster, more accurate results even in complex geological samples. By integrating attention mechanisms and explainable AI tools, the system boosts trust and performance in field-based mineral analysis.
Whey Protein Fraud: How Portable NIR Spectroscopy and AI Can Combat This Issue
May 20th 2025Researchers from Tsinghua and Hainan Universities have developed a portable, non-destructive method using NIR spectroscopy, hyperspectral imaging, and machine learning to accurately assess the quality and detect adulteration in whey protein supplements.
Describing Their Two-Step Neural Model: An Interview with Ayanjeet Ghosh and Rohit Bhargava
May 20th 2025In the second part of this three-part interview, Ayanjeet Ghosh of the University of Alabama and Rohit Bhargava of the University of Illinois Urbana-Champaign discuss how machine learning (ML) is used in data analysis and go into more detail about the model they developed in their study.
AI and Infrared Light Team Up to Advance Soil Carbon Monitoring
May 19th 2025A team of international researchers has developed a faster, more accurate method to analyze soil carbon fractions using mid-infrared spectroscopy and deep learning. Their approach preserves the chemical balance of soil organic carbon components, paving the way for improved climate models and sustainable land management.
Analyzing the Protein Secondary Structure in Tissue Specimens
May 19th 2025In the first part of this three-part interview, Ayanjeet Ghosh of the University of Alabama and Rohit Bhargava of the University of Illinois Urbana-Champaign discuss their interest in using discrete frequency infrared (IR) imaging to analyze protein secondary structures.