On February 25, Juergen Popp of the Leibniz Institute of Photonic Technology held a presentation at Pittcon in San Diego, California about how artificial intelligence (AI) can aid scientists in the tumor removal processes.
Extended Endoscopic removal of stones from the kidneys and ureter. 3d illustration | Image Credit: © Crystal light - stock.adobe.com
Intraoperative tumor resection is a commonly used tumor removal process that is supported by different examinations of said tumor, whether it be endoscopic, microscopic, or robotic-assisted examination. However, this approach does not enable precise tumor border definition, which can lead to incomplete removals and put patients at risk. According to Popp, biophotonic imaging can help to address this issue, since it can help provide morphological and molecular information on tumors. As part of this study, Popp and his team investigated how novel multimodal label-free spectroscopic instrumentation worked in combination with different AI approaches. The imaging technology was used to visualize tissue morphology and molecular structures, while AI-based image analysis approaches was used to automatically analyze the multimodal images into diagnostic information.
According to Popp, taking full advantage of these imaging approaches would involve implementing spectroscopic-guided femtosecond ablation, using it to seek and treat tumors (1). To this end, the scientists will soon introduce a nonlinear microendoscope that can ablate biological tissue with femtosecond lasers. AI approaches combined with fs-laser ablations will interact will open new ways for intraoperative and histopathological tumor analysis and selective removals, Popp said.
(1) Popp, J. Artificial Intelligence Driven Multimodal Imaging for Tumor Diagnosis and Therapy. Pittcon and The Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy, Inc. 2024. https://labscievents.pittcon.org/event/pittcon-2024/planning/UGxhbm5pbmdfMTc3MjMzOQ== (accessed 2024-2-21)
Hyperspectral Imaging for Walnut Quality Assessment and Shelf-Life Classification
June 12th 2025Researchers from Hebei University and Hebei University of Engineering have developed a hyperspectral imaging method combined with data fusion and machine learning to accurately and non-destructively assess walnut quality and classify storage periods.
AI-Powered Near-Infrared Imaging Remotely Identifies Explosives
June 11th 2025Chinese researchers have developed a powerful new method using near-infrared (NIR) hyperspectral imaging combined with a convolutional neural network (CNN) to identify hazardous explosive materials, like trinitrotoluene (TNT) and ammonium nitrate, from a distance, even when concealed by clothing or packaging.
New NIR/Raman Remote Imaging Reveals Hidden Salt Damage in Historic Fort
June 10th 2025Researchers have developed an analytical method combining remote near-infrared and Raman spectroscopy with machine learning to noninvasively map moisture and salt damage in historic buildings, offering critical insight into ongoing structural deterioration.
New Machine Learning Model Distinguishes Recycled PET with 10% Accuracy Threshold
June 9th 2025Researchers from Jinan University and Guangzhou Customs Technology Center have developed a cost-effective UV-vis spectroscopy and machine learning method to accurately identify recycled PET content as low as 10%, advancing sustainable packaging and circular economy efforts.
Harnessing Near-Infrared Spectroscopy and Machine Learning to Detect Microplastics in Chicken Feed
June 5th 2025Researchers from Tianjin Agricultural University, Nankai University, and Zhejiang A&F University have developed a highly accurate method using near-infrared spectroscopy and machine learning to rapidly detect and classify microplastics in chicken feed.