Two researchers hailing from Wageningen University and the Norwegian University of Life Sciences collaborated on a new method that improves on existing multilinear predictive modeling methods.
A breakthrough in multilinear predictive modeling has been unveiled by researchers at Wageningen University and Research and the Norwegian University of Life Sciences, according to a recent study published in the Journal of Chemometrics (1).
Multilinear predictive modeling is a statistical method commonly used in chemometric analysis. It examines multiple independent variables against a dependent variable and the relationship between them. It has been applied across the physical science fields (3–8). Because chemometrics handles data generated by advanced analytical instruments, multilinear predictive modeling methods are essential to interpret the higher order data (1).
Traditional multilinear regression approaches are often inadequate for this type of analysis because of the complexity of the data structures. As a result, lead author Puneet Mishra, in collaboration with contributor Kristian Hovde Liland, proposed a new method designed to extract multilinear information inherent in the data, which is typically lost when analyzed in unfolded form (1). Their study demonstrated that their method could handle outlier observations, which improves the accuracy of predictive models.
Digital cyberspace with particles and Digital data network connections concept. | Image Credit: © KanawatTH - stock.adobe.com.
The main feature of this approach is in its iterative down-weighting of outlier observations in both the predictor and response space (1). Traditional methods require separate outlier removal analysis. However, Mishra and Liland’s method overcomes this issue by integrating outlier handling into the modeling process (1). The result is that time and computational resources are saved.
The effectiveness of the method was demonstrated through extensive testing on three real multilinear data sets. In each case, the new approach outperformed traditional N-way partial least squares (NPLS) modeling in terms of root mean squared error of prediction (1).
Moreover, the versatility of the proposed algorithm extends beyond outlier handling. By adjusting a single parameter, it can seamlessly transition between robust multilinear modeling, traditional PLS analysis, and even iterative robust PLS (irPLS) analysis (1).
As a result, the researchers demonstrated in their study that this method improves multilinear predictive modeling for chemometrics. Because of their modifications to their method, Mishra and Liland show its effectiveness in improving the accuracy of statistical predictions and its efficiency by automating the outlier handling process.
By empowering researchers to effectively model complex data structures, the method proposed by Mishra and Liland holds the potential to accelerate discoveries and advancements across various domains of science and industry.
(1) Mishra, P.; Liland, K. H. Iterative Re-weighted Multilinear Partial Least Squares Modelling for Robust Predictive Modelling. J. Chemom. 2023, ASAP. DOI: 10.1002/cem.3527
(2) Allen, A. E. A.; Tkatchenko, A. Machine Learning of Material Properties: Predictive and Interpretable Multilinear Models. Sci. Adv. 2022, 8 (18). DOI: 10.1126/sciadv.abm.7185
(3) Isayev, O.; Oses, C.; Toher, C.; et al. Universal Fragment Descriptors for Predicting Properties of Inorganic Crystals. Nat. Commun. 2017, 8, 15679. DOI: 10.1038/ncomms15679
(4) Xie, T.; Grossman, J. C. Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties. Phys. Rev. Lett. 2018, 120, 145301. DOI: 10.1103/PhysRevLett.120.145301
(5) Mikulskis, P.; Alexander, M. R.; Winkler, D. A. Toward Interpretable Machine Learning Models for Materials Discovery. Adv. Intell. Syst. 2019, 1, 1900045. DOI: 10.1002/aisy.201900045
(6) Pilania, G. Machine Learning in Materials Science: From Explainable Predictions to Autonomous Design. Comput. Mater. Sci. 2021, 193, 110360. DOI: 10.1016/j.commatsci.2021.110360
(7) Ouyang, R.; Curtarolo, S.; E. Ahmetcik, E.; et al. SISSO: A Compressed-Sensing Method for Identifying the Best Low-Dimensional Descriptor in an Immensity of Offered Candidates. Phys. Rev. Mater. 2018, 2, 083802. DOI: 10.1103/PhysRevMaterials.2.083802
(8) Jha, D.; Ward, L.; Paul, A.; et al. ElemNet: Deep Learning the Chemistry of Materials from Only Elemental Composition. Sci. Rep. 2018, 8, 17593. DOI: 10.1038/s41598-018-35934-y
Wearable fNIRS Sensor Tracks Cognitive Fatigue in Real Time
May 7th 2025Researchers have developed a wireless, wearable brain-monitoring device using functional near-infrared spectroscopy (fNIRS) to detect cognitive fatigue in real time. The miniaturized system enables mobile brain activity tracking, with potential applications in driving, military, and high-stress work environments.
Real-Time Health Monitoring Using Smart Wearable Spectroscopy Sensors With AI
May 6th 2025A newly published review in the journal Advanced Materials explores how intelligent wearable sensors, powered by smart materials and machine learning, are changing healthcare into a decentralized, personalized, and predictive modeling system. An international team of researchers highlights emerging technologies that promise earlier diagnosis, improved therapy, and continuous health monitoring—anytime, anywhere.
AI and Satellite Spectroscopy Team Up to Monitor Urban River Pollution in China
April 30th 2025A study from Chinese researchers demonstrates how combining satellite imagery, land use data, and machine learning can improve pollution monitoring in fast-changing urban rivers. The study focuses on non-optically active pollutants in the Weihe River Basin and showcases promising results for remote, data-driven water quality assessments.
How Satellite-Based Spectroscopy is Transforming Inland Water Quality Monitoring
Published: April 29th 2025 | Updated: April 29th 2025New research highlights how remote satellite sensing technologies are changing the way scientists monitor inland water quality, offering powerful tools for tracking pollutants, analyzing ecological health, and supporting environmental policies across the globe.
Introduction to Satellite and Aerial Spectral Imaging Systems
April 28th 2025Modern remote sensing technologies have evolved from coarse-resolution multispectral sensors like MODIS and MERIS to high-resolution, multi-band systems such as Sentinel-2 MSI, Landsat OLI, and UAV-mounted spectrometers. These advancements provide greater spectral and spatial detail, enabling precise monitoring of environmental, agricultural, and land-use dynamics.