A team of researchers has conducted a successful round-robin test using total reflection X-ray fluorescence (TXRF) to analyze the elemental composition of rat tissue samples. The preliminary results demonstrate the effectiveness of TXRF in accurately determining the elemental composition of mammalian tissue.
Scientists from AGH University of Science and Technology in Krakow, Poland, have conducted a groundbreaking round-robin test to evaluate the element analysis of rat tissue samples using the total reflection X-ray fluorescence (TXRF) method. The study, led by Joanna Chwiej and published in Spectrochimica Acta Part B: Atomic Spectroscopy, aimed to assess the performance and reliability of TXRF by analyzing the elemental composition of rat organs in different European laboratories (1).
Rats isolated | Image Credit: © EwaStudio - stock.adobe.comx
TXRF involves directing an X-ray beam at a shallow angle onto a sample surface coated with a thin layer of a reflective material, such as silicon. This angle causes total reflection of the X-rays at the surface, resulting in the generation of a standing wave known as an evanescent wave. As the X-rays penetrate the sample surface, they interact with the atoms of the material, causing the emission of characteristic fluorescent X-rays. The emitted X-rays are then detected and analyzed to determine the elemental composition and concentration of the sample.
In this inter-comparison investigation, rat organs including the kidney, heart, spleen, and lung were subjected to microwave digestion. The resulting liquid samples were sent to four participating European laboratories equipped with various commercially available TXRF spectrometers. The laboratories analyzed the samples to determine their elemental composition, focusing on macroelements (P, S, and K) with concentrations above 1000 μg/g, as well as microelements (Ca) and trace elements (Fe, Cu, Zn, and Se) present at concentrations ranging from 100 to 1000 μg/g and below 100 μg/g, respectively.
The study evaluated several validation parameters, including detection limits, intra-day and inter-day precision, and inter-laboratory precision to assess the variation in results among the participating laboratories. The TXRF data was also compared with results obtained through inductively coupled plasma-mass spectrometry (ICP-MS) for Se analysis and inductively coupled plasma-optical emission spectrometry (ICP-OES) for analysis of P, S, K, Ca, Fe, Cu, and Zn.
The preliminary results demonstrated the high utility of the TXRF method for elemental analysis in animal tissues. As expected, elements with higher atomic numbers, such as Fe, Cu, Zn, and Se, yielded the best results in terms of accuracy and precision. The round-robin test confirmed good accuracy (around 100%) and precision (intra-day <6%, inter-day <12%, and inter-laboratory <12%) for these elements, highlighting the potential of TXRF for their determination in mammalian tissue samples.
However, the study also identified areas for improvement in the analysis of light elements like P, S, and K. These findings emphasized the need to optimize sample preparation procedures to minimize self-absorption in the dried residue, standardize sensitivity calibration and spectra fitting procedures among laboratories, and address other challenges to enhance the overall usefulness of TXRF in analyzing light elements.
The results of this pioneering study pave the way for future advancements in elemental analysis using TXRF and provide valuable insights for researchers working in the field of tissue analysis. By refining and standardizing analytical protocols, the TXRF method has the potential to contribute significantly to our understanding of the elemental composition of biological samples and support advancements in various scientific and medical fields.
(1) Olbrich, K.; Kubala-Kukus, A.; Marguí, E.; Fernández-Ruiz, R.; Matusiak, K.; Wudarczyk-Mocko, J.; Wrobel, P.; Setkowicz, Z.; Chwiej, J. The first total reflection X-ray fluorescence round-robin test of rat tissue samples: Preliminary results. Spectrochim. Acta Part B At. Spectrosc. 2023, 205, 106695. DOI: https://doi.org/10.1016/j.sab.2023.106695
Raman Reveals Rare Ribbeck Meteorite Clues About Ancient Solar System
May 28th 2025A team of scientists in Poland has unveiled the first detailed structural and magnetic analysis of the Ribbeck meteorite, a recently recovered space rock classified as an aubrite. Using Raman spectroscopy, X-ray diffraction, and advanced magnetic testing, researchers revealed the meteorite's unique mineralogy and its connection to deep space conditions.
New Study Finds Elevated Metal Levels in Some Cat Foods Sold in Sharjah
May 27th 2025A new study published in the Journal of Food Composition and Analysis by researchers at the University of Sharjah reveals that while most cat foods sold in Sharjah meet international safety standards, some contain elevated metal levels, prompting calls for stricter regulation and quality control to protect pet health.
Multi-Analytical Study Reveals Complex History Behind Ancient Snake Motif in Argentine Rock Art
May 22nd 2025A recent study published in the Journal of Archaeological Science: Reports reveals that a multi-headed snake motif at Argentina's La Candelaria rock shelter was created through multiple painting events over time.
Machine Learning Accelerates Clinical Progress of SERS Technology
May 22nd 2025A new review in TrAC Trends in Analytical Chemistry by Alfred Chin Yen Tay and Liang Wang highlights how machine learning (ML) is transforming surface-enhanced Raman spectroscopy (SERS) into a powerful, clinically viable tool for rapid and accurate medical diagnostics.
Describing Their Two-Step Neural Model: An Interview with Ayanjeet Ghosh and Rohit Bhargava
May 20th 2025In the second part of this three-part interview, Ayanjeet Ghosh of the University of Alabama and Rohit Bhargava of the University of Illinois Urbana-Champaign discuss how machine learning (ML) is used in data analysis and go into more detail about the model they developed in their study.
Analyzing the Protein Secondary Structure in Tissue Specimens
May 19th 2025In the first part of this three-part interview, Ayanjeet Ghosh of the University of Alabama and Rohit Bhargava of the University of Illinois Urbana-Champaign discuss their interest in using discrete frequency infrared (IR) imaging to analyze protein secondary structures.