What New Methods to Measure Isotope Ratios Can Reveal About the Environment, Humans, and the Earth

November 1, 2014
Special Issues

Volume 29, Issue 11

Multiple-collector inductively coupled plasma–mass spectrometry (MC-ICP-MS) has some specific advantages over traditional ICP-MS instruments.

Multiple-collector inductively coupled plasma–mass spectrometry (MC-ICP-MS) has some specific advantages over traditional ICP-MS instruments. Because of its ability to measure high-precision isotope ratios, MC-ICP-MS shows promise for applications as diverse as tracing the transport of heavy metals into bivalves (oysters and mussels), studying isotopic variations of metals in the human body, and identifying the source of volcanoes. Spectroscopy recently spoke with Dominique Weis, PhD, a Canadian Research Chair, Tier I, and Director at the Pacific Centre for Isotopic and Geochemical Research (PCIGR), in the Department of Earth, Ocean, and Atmospheric Sciences at the University of British Columbia, about her research on this technique.

How do methods using MC-ICP-MS differ from traditional inductively coupled plasma–mass spectrometry (ICP-MS) methods? What are the advantages and disadvantages of MC-ICP-MS?

Weis: There are several main differences between the methods using MC-ICP-MS and those using traditional ICP-MS. First, MC-ICP-MS instruments are mostly used to measure high-precision isotope ratios whereas ICP-MS instruments are used to determine elemental concentrations. Second, MC-ICP-MS instruments measure within a narrow range of masses (the isotopes of the element of interest and spectral interferences) whereas ICP-MS analyses typically cover a wide to full mass range. Third, high-precision isotope analyses by MC-ICP-MS require minimum matrix load in samples, whereas concentration measurements by ICP-MS have a much higher matrix tolerance.

TOM FULLUM/GETTY IMAGES

The advantages of MC-ICP-MS versus conventional ICP-MS (sector field inductively coupled plasma–mass spectrometry [SF-ICP-MS] or quadrupole inductively coupled plasma–mass spectrometry [Q-ICP-MS]) are the ability to simultaneously collect masses as a result of the presence of up to 16 collectors as well as a wider mass dispersion because of larger geometry.

The disadvantages of MC-ICP-MS versus conventional ICP-MS (SF-ICP-MS or Q-ICP-MS) are that the instruments are too slow to scan over a wide mass range, and to achieve better precision the detectors are Faraday cups, which have better linearity yet lower sensitivity than ion counters (ICs) typically used for SF-ICP-MS or Q-ICP-MS.

What strategies are used in MC-ICP-MS to avoid analytical artifacts from spectral interferences and matrix effects in Earth science studies, and in isotope ratio measurements in particular (1,2)?

Weis: The main strategies to reduce or remove spectral and matrix effects include

  • chemical separation of the analyte from the matrix;

  • using desolvating systems (reducing oxide interference with the partial removal of the water in the sample);

  • using retardation filters (for ICs);

  • monitoring possible interfering masses in addition to the masses of interest and correcting off-line;

  • spiking the sample and the standard with a similar matrix;

  • different tuning settings in ion optics or subtle variations at the front end, such as torch position, nebulizer selection, and introduction of additional gases; and

  • using high resolution including the pseudo-high resolution option.

The most difficult interferences to deal with in MC-ICP-MS measurements are isobaric interferences. The separation of the isotope of interest in MC-ICP-MS is achieved according to the principle that ions are bent into different radius of curvature passing through the magnetic field according to their mass-to-charge ratios (m/z). The only way to remove isobaric interferences is to use the higher resolution feature of the instrument to either completely separate the peak of the interferent from that of the analyte (for example, Nu1700) or to partially separate the adjoining peaks to reveal a sufficient mass width of the analyte peak to be used for the measurement (for example, Finnigan Neptune, or Nu Plasmas I and II). Technically, the higher resolution is achieved by reducing the width of the slits to narrow down the ion beam, which in turn reduces the sensitivity. There is generally a trade-off to make between the sensitivity and resolution adopted.

In your research with MC-ICP-MS on natural and anthropogenic sources of metals in bivalves (3), how important is the ionization efficiency provided by the technique in obtaining meaningful data? What other techniques have been used to look at the small variations in the isotopic composition of heavy metals in the environment?

Weis: In our study using isotopic analyses of Cd (and Zn) in bivalves to trace the fate of these metals in the environment, the precision and the ionization of the MC-ICP-MS technique were critical, as the variations were too small to be resolved with the precision of thermal ionization instruments.

The fate and the transport of heavy metals in the environment are a function of their speciation, a key parameter to keep in mind when interpreting isotopic results for such studies. Bulk analyses, as produced in many laboratories around the world for environmental purposes, will be progressively outdated. However, it is so far extremely challenging to analyze the species-specific isotope composition for a metal. A lot of development work remains to be done to allow coupling classical on-line speciation techniques with MC-ICP-MS as those techniques generate a lot of "noise" in terms of matrix in the plasma, as well as transient signals (few seconds), totally different than those usually measured (10 min) with traditional isotope ratio techniques.

Tremendous developments are being made in the field of in situ analyses, with the coupling of a laser ablation system to an MC-ICP-MS system, allowing researchers to narrow down the scale of observation to micrometers or tens of micrometers.

References

(1) J. Barling and D. Weis, J. Anal. At. Spectrom. 23, 1017–1025 (2008).

(2) A.E. Shiel, J. Barling, K.J. Orians, and D.Weis, Analytica Chimica Acta 633, 29–37 (2009).

(3) A.E. Shiel, D. Weis, and K.J. Orians, Geochimica et Cosmochimica Acta 76, 175–190 (2012).

This interview has been edited for length and clarity. To read the full interview visit: spectroscopyonline.com/Weis.