William G. Fateley: Scholar, Editor, and Innovator in Vibrational Spectroscopy
September 15th 2025This Icons of Spectroscopy Series article features William George “Bill” Fateley, who shaped modern vibrational spectroscopy through landmark reference books and research papers, pioneering instrumentation, decades of editorial leadership, and deep commitments to students and colleagues. This article reviews his career arc, scientific contributions, and enduring legacy.
Mid-Infrared Emission Study Proposes New Principle for Noninvasive Blood Sugar Measurement
September 12th 2025A research team in Japan has proposed a new principle, called the emission integral effect, to explain how mid-infrared passive spectroscopic imaging can detect blood glucose levels without invasive methods. Their findings suggest that dilute components like glucose may be more identifiable than concentrated ones when using this technique.
New Infrared Device Measures Blood Sugar Without a Prick
September 11th 2025Researchers have developed a miniature non-invasive blood glucose monitoring system using near-infrared (NIR) technology. The compact, low-cost device uses infrared light to measure sugar levels through the fingertip, offering a painless alternative to traditional finger-prick tests.
Molar Absorptivity Model Powers Near-Infrared Glucose Testing
September 10th 2025Researchers from Sharif University of Technology, Tehran, present an approach using near-infrared absorbance and molar absorptivity to estimate blood glucose with a drawn blood sample—showing comparable performance to methods that apply principal components regression (PCR).
Mini-Tutorial on NIR Aquaphotomics for Rapid, Non-Destructive Biofluid and Food Analysis
September 9th 2025Near-infrared (NIR) spectroscopy combined with aquaphotomics shows potential for a rapid, non-invasive approach to detect subtle biochemical changes in biofluids and agricultural products. By monitoring water molecular structures through water matrix coordinates (WAMACs) and visualizing water absorption spectrum patterns (WASPs) via aquagrams, researchers can identify disease biomarkers, food contaminants, and other analytes with high accuracy. This tutorial introduces the principles, practical workflow, and applications of NIR aquaphotomics for everyday laboratory use.
Demystifying the Black Box: Making Machine Learning Models Explainable in Spectroscopy
September 8th 2025This tutorial provides an in-depth discussion of methods to make machine learning (ML) models interpretable in the context of spectroscopic data analysis. As atomic and molecular spectroscopy increasingly incorporates advanced ML techniques, the black-box nature of these models can limit their utility in scientific research and practical applications. We present explainable artificial intelligence (XAI) approaches such as SHAP, LIME, and saliency maps, demonstrating how they can help identify chemically meaningful spectral features. This tutorial also explores the trade-off between model complexity and interpretability.