Author | John Chasse


Advancing In Situ Applications of Spectroscopy in an Industrial Setting

February 01, 2020



Xiaoyun (Shawn) Chen of Dow Chemical solves a range of analytical problems in R&D and production processes using in situ spectroscopy and chemometrics.

Detecting and Identifying Food Colorants with SERS

October 01, 2019



SERS is a method that is receiving new attention in the detection, analysis, and identification of both natural and artificial food colorants. Lili He, at the University of Massachusetts, Amherst, recently spoke to Spectroscopy about this important analytical work.

Developing Spectroscopy Instruments for Use in Extreme Environments

September 13, 2019


Spectroscopy can be difficult to carry out outside a controlled laboratory environment. Imagine, then, the hurdles that would accompany performing spectroscopy in the extreme conditions of deep space or the ocean floor. Mike Angel, a professor of chemistry at the University of South Carolina, has taken on those challenges, working on new types of instruments for remote and in- situ laser spectroscopy, with a focus on deep-ocean, planetary, and homeland security applications of deep ultraviolet Raman, and laser-induced breakdown spectroscopy to develop the tools necessary to work within these extreme environments.

Using LIBS to Track Uranium Materials

July 15, 2019


Laser induced breakdown spectroscopy (LIBS) has been applied as quantitative and qualitative analytical method for a variety of matrices. A paper published in the journal Applied Spectroscopy in 2018 (1) was chosen by from the North American Society for LIBS (NASLIBS) and the Society for Applied Spectroscopy (SAS) as the best paper on the topic of LIBS. In this paper, a molten salt aerosol–laser-induced breakdown spectroscopy (LIBS) instrument was used to measure the uranium (U) content in a ternary UCl3–LiCl–KCl salt matrix to investigate the development of a near real-time analytical method. We spoke with Ammon Williams, the primary author of this paper, who is currently with the Idaho National Laboratory (INL), about this work.