Authors


Shuyan Peng

Latest:

Authenticity Identification of Panax notoginseng by Terahertz Spectroscopy Combined with LS-SVM

In this article, it is explored whether THz-TDS combined with LS-SVM can be used to effectively identify the authenticity of Panax notoginseng, a traditional Chinese medicine.


Nimesh Khadka

Latest:

Quantification of Adenine Residues in the PolyA Tail of Oligonucleotides Using Raman Spectroscopy

Raman spectroscopy emerges as a powerful tool for quantifying adenine in nucleic acid therapeutics, enhancing analytical efficiency and quality assessment.


Ling Gao

Latest:

Comparative Study of Heavy Metals Analysis in Mongolian Medicines Based on High Sensitivity X-ray Fluorescence Spectroscopy and ICP-MS

In this study, X-ray fluorescence (XRF) spectroscopy was used to analyze heavy metals in five traditional Mongolian medicines, and the results were compared to those obtained using ICP-MS.


Martin M. Kimani

Latest:

Analysis of Unlabeled Sibutramine in Dietary Supplements Using Surface-Enhanced Raman Spectroscopy (SERS) with Handheld Devices

This article discusses how FT-IR and SERS is being used to detect counterfeit pharmaceutical drugs.


Xiangqian Feng

Latest:

Studying the Source of Raw Material and Glaze Formula of Sky Green “Ru-type Ware” and Ru Kuan Ware by EDXRF

As this study demonstrates, energy-dispersive X-ray fluorescence (EDXRF) and multivariate statistical analysis can be used to distinguish different classes of historical artifacts, such as ancient pottery—revealing insights about theirs origin and uses.


Li Hai-su

Latest:

Detection of Trace Tin(II) by Salicylfluoroketone Complex Fluorescence Method

A complex fluorescence method utilizing the Sn(II)-salicylfluorescein (SAF)-cetyltrimethylammonium bromide (CTMAB) system demonstrated effective detection of Sn(II) with a linear relationship between its concentration and fluorescence intensity, along with successful application in various sample matrices with high recovery rates.


Liang Sheng-wang

Latest:

Fingerprinting of Mineral Medicine Natrii Sulfas by Fourier Transform Infrared Spectroscopy

We show how FT-IR may be used for quality control analysis of natrii sulfas, a transparent crystalline material used in natural medicine that primarily contains sodium sulfate decahydrate, crystallized from sulfate minerals.


Hang Zhang

Latest:

Simultaneous Detection of Nitrate and Nitrite Based on UV Absorption Spectroscopy and Machine Learning

Regulations have been imposed to set legal limits of nitrate and nitrite in water worldwide. In this study, a highly accurate and optimized ultraviolet (UV) spectroscopy method is proposed to simultaneously monitor nitrate and nitrite for rapid determination and continuous monitoring in environmental water applications.


Guohui Wei

Latest:

Cold-Hot Nature Identification of Chinese Medicine Based on an Ultraviolet Chemical Fingerprint

A model has been developed to predict the “cold” or “hot” nature of Chinese medicines based on UV spectral data.


Idrees F. Al Momani

Latest:

Spectrophotometric and Chemometric Methods for Simultaneous Determination of Antazoline and Naphazoline in Pharmaceutical Eye Drops

This study applied principal component regression (PCR) and partial least squares (PLS) algorithms for the spectrophotometric analysis of a drug containing antazoline hydrochloride (AN) and naphazoline hydrochloride (NP) without chemical separation. Both methods showed high accuracy and precision, with results closely matching those from a reference HPLC method, and were successfully validated for analyzing commercial pharmaceutical products.


Kai-yong Wang

Latest:

Study on Estimating Total Nitrogen Content in Sugar Beet Leaves Under Drip Irrigation Based on Vis-NIR Hyperspectral Data and Chlorophyll Content

The relationship between leaf nitrogen content (LNC) and hyperspectral remote sensing imagery (HYP) was determined to construct an estimation model of the LNC of drip-irrigated sugar beets, to enable real-time monitoring of sugar beet growth and nitrogen management in arid areas.


Ashleigh Farnsworth

Latest:

Raman Spectroscopy: A Key Technique in Investigating Carbon-Based Materials

This article explains the key steps of using Raman technology to investigate carbon and carbon-based materials—such as carbon nanotubes, graphene, and carbon fibers and composites—as well as the process of analyzing the spectra.


Cong Liu

Latest:

Automatic Coal-Rock Recognition by Laser-Induced Breakdown Spectroscopy Combined with an Artificial Neural Network

An artificial neural network was combined with LIBS to provide a rapid and accurate coal-rock recognition method for unmanned coal mining.



Zeyu Zhang

Latest:

Rapid Analysis of Logging Wellhead Gases Based on Fourier Transform Infrared Spectroscopy

Fourier transform infrared (FT-IR) spectroscopy was used in this paper to rapidly analyze seven light alkanes (methane, ethane, propane, n-butane, i-butane, n-pentane, and i-pentane) in wellhead gases.


Cang Gong

Latest:

Simultaneous Determination of 50 Elements in Geological Samples by ICP-MS Combined with ICP-OES

A method combining inductively coupled plasma–mass spectrometry (ICP-MS) with inductively coupled plasma–optical emission spectrometry (ICP-OES) was developed for multielement determination of 50 species of major, minor, micro, and trace, rare earth, and rare elements in geological samples.



Fei Teng

Latest:

Comparative Study of Heavy Metals Analysis in Mongolian Medicines Based on High Sensitivity X-ray Fluorescence Spectroscopy and ICP-MS

In this study, X-ray fluorescence (XRF) spectroscopy was used to analyze heavy metals in five traditional Mongolian medicines, and the results were compared to those obtained using ICP-MS.


Emmanuel Asamoah

Latest:

Investigating a Laser-Induced Titanium Plasma Under an Applied Static Electric Field

We investigate the effect of an applied electric field on the laser-induced titanium plasma for laser induced breakdown spectroscopy (LIBS) for the purpose of assessing electron density with respect to laser energy.


Yang Yu

Latest:

Evaluation and Development Trends of Optical Detection Technology for Seed Vigor

In this article, the basic principles, advantages, and limitations of different optical techniques for obtaining seed vigor estimates are introduced and reviewed, and the key technology of non-destructive optical detection of single seeds will be discussed.


Darina Storozhuk

Latest:

Real-Time Chemometric Analysis of Multicomponent Bioprocesses Using Raman Spectroscopy

In this study, a glycerol-fed, lab-scale E. coli bioprocess producing representative pharmaceutical compounds was monitored offline with a portable, high-sensitivity Raman spectrometer.


Hanbing Qi

Latest:

Optical Constants of Mixed Crude Oil in Visible Waveband Based on the Double-Thickness Transmittance Method

To study the optical properties of mixed crude oil, the optical constants of samples consisting of two crude oils mixed in different proportions were obtained by the double-thickness transmittance method based on transmittance spectra.


María C. Moreno-Bondi

Latest:

Fiberoptic Formaldehyde Field Sensors for Industrial Environments: Capitalizing on Evanescent-Wave Spectroscopy

An inexpensive fiberoptic-based formaldehyde field sensor is described for monitoring low-levels of formaldehyde, a widespread indoor air pollutant, based on the principle of evanescent wave absorption of light. Sensor prototypes following that principle are being tested in two plywood board production plants.


Cao Nailiang

Latest:

Evaluation and Development Trends of Optical Detection Technology for Seed Vigor

In this article, the basic principles, advantages, and limitations of different optical techniques for obtaining seed vigor estimates are introduced and reviewed, and the key technology of non-destructive optical detection of single seeds will be discussed.


Peter Riles

Latest:

Non-Specific Calibration Combined with Helium Collision Mode for Elemental Screening

The ICP–MS mass spectrum contains useful additional information, but how to obtain that information is the question. Here, we provide the answer.


B&W Tek

Latest:

Botanical Verification with Handheld Raman

This app note demonstrates the effectiveness of utilizing the NanoRam-1064 for analyzing and identifying botanical ingredients while minimizing fluorescence.



Richard A. Crocombe

Latest:

Portable Raman Spectrometers: How Small Can They Get?

There is a growing desire among spectroscopists for having instruments small enough to be taken to the sample, as opposed to bringing the sample to the instrument. The result is that Raman spectrometers are becoming more miniaturized. Because these instruments come at a lower cost and offer distinct advantages over traditional spectrometers, the expectation is that a rapid expansion of when these instruments are applied will come forthwith. We offer a preview of how future miniaturized Raman spectrometers might look.


Houfei Shang

Latest:

Specific Recognition Technology of Infrared Absorption Spectra Based on Continuous Wavelet Decomposition

IR absorption spectroscopy technology can solve the problem of line aliasing in gas detection. Here, continuous wavelet transform was used in time-frequency analysis to improve spectral component identification and quantitative detection of gases.


Craig J. McClain

Latest:

High-Throughput Profiling of Long Chain Fatty Acids and Oxylipins by LC–MS

Long chain fatty acids (LCFAs) function as a source of metabolic energy, substrates for membrane biogenesis, and storage of metabolic energy. Oxylipins, oxygenated derivatives of LCFAs, regulate the activity of many cellular processes. Existing methods for the analysis of LCFAs and oxylipins have limited compound coverage and sensitivity that, therefore, prevent their application in biological studies. In this work, we developed a high-throughput LC–MS method for analysis of 51 LCFAs and oxylipins. LCFAs and oxylipins were first extracted from biological samples via solid-phase extraction. The extracted molecules were analyzed by targeted comparative metabolomics. Saturated and monounsaturated LCFAs were analyzed in single ion reaction mode, while polyunsaturated LCFAs and oxylipins were analyzed in multiple reaction monitoring mode. Using this method, we successfully quantified 31 LCFAs and oxylipins from mouse livers.