This application note will demonstrate the ability of High Dispersion ICP-OES in the determination of alloying elements in stainless steels. The dual viewing capability will be used to determine the high concentration elements on the radial view while the axial view will determine the lower concentration, such as phosphorus (P) and sulfur (S). Stainless steels are a corrosion resistant family of iron alloys. The corrosion resistance is due to the formation of a passive chromium (III) oxide (Cr2O3) layer on the surface of the steel. If this layer is damaged by cutting, scratching or abrasion, it will regenerate, provided sufficient oxygen is available, preventing corrosion. Stainless steels have poor corrosion resistance in low oxygen environments since the oxide layer cannot be repaired quickly enough.
How Do We Improve Elemental Impurity Analysis in Pharmaceutical Quality Control?
May 16th 2025In this final part of our conversation with Harrington and Seibert, they discuss the main challenges that they encountered in their study and how we can improve elemental impurity analysis in pharmaceutical quality control.
How do Pharmaceutical Laboratories Approach Elemental Impurity Analysis?
May 14th 2025Spectroscopy sat down with James Harrington of Research Triangle Institute (RTI International) in Research Triangle Park, North Carolina, who was the lead author of this study, as well as coauthor Donna Seibert of Kalamazoo, Michigan. In Part I of our conversation with Harrington and Seibert, they discuss the impact of ICH Q3D and United States Pharmacopeia (USP) <232>/<233> guidelines on elemental impurity analysis and how they designed their study.
LIBS Illuminates the Hidden Health Risks of Indoor Welding and Soldering
April 23rd 2025A new dual-spectroscopy approach reveals real-time pollution threats in indoor workspaces. Chinese researchers have pioneered the use of laser-induced breakdown spectroscopy (LIBS) and aerosol mass spectrometry to uncover and monitor harmful heavy metal and dust emissions from soldering and welding in real-time. These complementary tools offer a fast, accurate means to evaluate air quality threats in industrial and indoor environments—where people spend most of their time.