Top articles published this week include a preview of our upcoming content series for National Space Day, a news story about air quality monitoring, and an announcement from Metrohm about their new Midwest office.
This week, Spectroscopy published articles highlighting recent studies in several application areas in analytical spectroscopy including environmental analysis and space exploration. Key techniques highlighted in these articles include infrared (IR) spectroscopy, Raman spectroscopy, and laser-induced breakdown spectroscopy (LIBS). Happy reading!
Celebrate National Space Day with Spectroscopy
Spectroscopy is partnering with the Society for Applied Spectroscopy (SAS) to celebrate National Space Day on May 2 with a special online content series. This upcoming content series will highlight spectroscopy's crucial role in space exploration, including its use in instruments aboard the Hubble and James Webb telescopes, as well as the Mars rovers Perseverance and Curiosity. Spectroscopy enables remote analysis of celestial bodies, helping scientists uncover the chemical composition and atmospheric conditions of planets and stars (1). Techniques like Raman, IR, and mass spectrometry (MS) have advanced the search for life on Mars by identifying key elements and water-formed minerals, driving future discoveries in planetary science (1).
LIBS Illuminates the Hidden Health Risks of Indoor Welding and Soldering
As indoor soldering and welding become more common, scientists in China have developed a rapid air quality monitoring system using LIBS and single-particle aerosol mass spectrometry (SPAMS). These tools detect harmful airborne pollutants like lead, tin, carbon emissions, and fine particulate matter (PM2.5, PM10) in real time (2). The studies show that rising soldering temperatures increase toxic emissions, with PM2.5 posing serious health risks because of prolonged exposure (2). Combining LIBS and SPAMS with machine learning (ML) enables detailed pollutant profiling and real-time alerts, offering a faster, non-destructive alternative to traditional air monitoring for safer indoor environments.
Metrohm Announces Grand Opening of Regional Office in Chicago
Metrohm USA has opened a new regional office and laboratory in Lombard, Illinois, to enhance support and service for its Midwest customers. This strategic expansion aims to improve accessibility for industries such as pharmaceuticals, food and beverage, and environmental testing. The facility features spaces for training, product demos, and industry events, reinforcing Metrohm’s commitment to personalized, collaborative customer support (3). Located near Chicago’s major transportation hubs, the office offers greater convenience and responsiveness. The ribbon-cutting ceremony is scheduled for April 30 (3). This move underscores Metrohm’s mission to provide innovative, high-quality chemical analysis solutions alongside a human-centered customer experience.
Smarter Sensors, Cleaner Earth Using AI and IoT for Pollution Monitoring
A recent review article published in Frontiers in Environmental Science highlighted how smart technologies like artificial intelligence (AI), Internet of Things (IoT), machine learning (ML), and spectroscopy are improving pollution monitoring. Led by an international team, the study explores how low-cost sensors and AI algorithms enable real-time detection and prediction of air, soil, and water pollutants (4). Spectroscopic techniques, such as vis-NIR and surface-enhanced Raman spectroscopy (SERS), play a key role in identifying contaminants, while integrated sensor networks enhance environmental data accuracy (4). Despite challenges like data sharing and model transparency, this review underscores the growing potential of digital tools in advancing sustainable pollution control.
High-Speed Laser MS for Precise, Prep-Free Environmental Particle Tracking
Researchers at Oak Ridge National Laboratory recently demonstrated the effectiveness of laser ablation-inductively coupled plasma-time-of-flight mass spectrometry (LA-ICP-TOF-MS) for rapid, direct analysis of airborne pollutants. Unlike traditional methods, this technique requires no chemical digestion, offering accurate, high-throughput elemental mapping in under 30 minutes per sample (5). The study, involving intentional ruthenium particle release, showed that LA-ICP-TOF-MS detects and differentiates target and background particles with high precision (5). Compared to quadrupole systems, TOF-MS offers better isotopic accuracy and broader element detection (5). Validated by SEM-EDS, the method holds promise for real-time environmental and public health monitoring of toxic airborne contaminants.
Radar and Soil Spectroscopy Boost Soil Carbon Predictions in Brazil’s Semi-Arid Regions
July 7th 2025A new study published in Geoderma demonstrates that combining soil spectroscopy with radar-derived vegetation indices and environmental data significantly improves the accuracy of soil organic carbon predictions in Brazil’s semi-arid regions.
Advancing Deep Soil Moisture Monitoring with AI-Powered Spectroscopy Drones
July 7th 2025A Virginia Tech study has combined drone-mounted NIR hyperspectral imaging (400 nm to 1100 nm) and AI to estimate soil moisture at root depths with remarkable accuracy, paving the way for smarter irrigation and resilient farming.
AI Boosts SERS for Next Generation Biomedical Breakthroughs
July 2nd 2025Researchers from Shanghai Jiao Tong University are harnessing artificial intelligence to elevate surface-enhanced Raman spectroscopy (SERS) for highly sensitive, multiplexed biomedical analysis, enabling faster diagnostics, imaging, and personalized treatments.
Artificial Intelligence Accelerates Molecular Vibration Analysis, Study Finds
July 1st 2025A new review led by researchers from MIT and Oak Ridge National Laboratory outlines how artificial intelligence (AI) is transforming the study of molecular vibrations and phonons, making spectroscopic analysis faster, more accurate, and more accessible.
AI and Dual-Sensor Spectroscopy Supercharge Antibiotic Fermentation
June 30th 2025Researchers from Chinese universities have developed an AI-powered platform that combines near-infrared (NIR) and Raman spectroscopy for real-time monitoring and control of antibiotic production, boosting efficiency by over 30%.