Researchers have developed a sum frequency generation spectroscopy setup to characterize the output profile of an infrared free electron laser, providing valuable insight into the development of more efficient and accurate lasers.
Xiamen University researchers have developed a sum frequency generation spectroscopy setup to characterize the output profile of an infrared free electron laser. The study, published online on April 21, 2023, in Spectroscopy Letters, was led by Zhaohui Wang (1).
Red laser beam from a lab laser. Warning notice on front. Black background. | Image Credit: © madscinbca - stock.adobe.com
Infrared free electron lasers are valuable tools in tracing reaction and vibrational energy transfer dynamics. Accurately characterizing their wavelength and micropulse profile is crucial for debugging and optimization purposes. Infrared free electron lasers are powerful laser sources that produce intense infrared light. Unlike traditional lasers that use solid-state or gas media, they generate light by passing an electron beam through an undulator. This process creates a powerful, tunable, and broadband infrared light source that can be used for a wide range of applications.
The researchers used a tabletop femtosecond laser to synchronize with the infrared free electron laser with high precision. This allowed them to develop an infrared free electron laser-sum frequency generation setup to measure the wavelength and micropulse duration of the laser output.
Through sum frequency generation cross-correlation, the team measured the delaytime-dependent infrared free electron laser-sum frequency generation spectra of a ZnS window. They found that the measured infrared free electron laser wavelength was linearly correlated with theoretical calculations based on a fixed electron beam energy and variable undulator magnetic gaps.
The micropulse duration was measured as 2.0 ps @ 5.25 µm and 2.9 ps @ 8.35 µm. These results demonstrate the excellent ability of sum frequency generation in diagnosing and characterizing infrared free electron laser output profiles, and the quality of the infrared free electron laser pulse structure.
Overall, the study offers valuable insight into the development of more efficient and accurate infrared free electron lasers. The sum frequency generation spectroscopy setup developed by the researchers has the potential to be widely used for diagnostic and optimization purposes in infrared free electron laser research.
(1) Guo, W.; Song, Q.; Xue, J.; Huangfu, Z.; He, Y.; Zhang, Y.; Liu, X.; Bao, J.; Wang, Z. Characterization of infrared free electron laser output profile through sum frequency generation spectroscopy. Spectrosc. Lett. 2023. DOI: https://doi.org/10.1080/00387010.2023.2201294
Microplastics Widespread on Catalan Beaches, Study Finds
March 28th 2025In a recent study published in Marine Pollution Bulletin, a team of researchers from several Spain and Portugal universities and institutions (Rovira i Virgili University, Universitat de Barcelona, University of Porto, and Institut d'Investigació Sanitaria Pere Virgili (IISPV) assessed microplastic (MP) contamination along the Mediterranean coastline.
Using Spectroscopy to Reveal the Secrets of Space
March 25th 2025Scientists are using advanced spectroscopic techniques to probe the universe, uncovering vital insights about celestial objects. A new study by Diriba Gonfa Tolasa of Assosa University, Ethiopia, highlights how atomic and molecular physics contribute to astrophysical discoveries, shaping our understanding of stars, galaxies, and even the possibility of extraterrestrial life.
New Telescope Technique Expands Exoplanet Atmosphere Spectroscopic Studies
March 24th 2025Astronomers have made a significant leap in the study of exoplanet atmospheres with a new ground-based spectroscopic technique that rivals space-based observations in precision. Using the Exoplanet Transmission Spectroscopy Imager (ETSI) at McDonald Observatory in Texas, researchers have analyzed 21 exoplanet atmospheres, demonstrating that ground-based telescopes can now provide cost-effective reconnaissance for future high-precision studies with facilities like the James Webb Space Telescope (JWST) (1-3).