On October 10, Andrew Schmitz, an application scientist at ThermoFisher Scientific, held a workshop at the Gulf Coast Conference in Galveston, Texas, titled “Fourier Transform Infrared Spectroscopy (FTIR) spectroscopy for in-service lubricant analysis.”
Andrew Schmitz | Image Credit: © Gulf Coast Conference - gulfcoastconference.com
In-service lubricant analysis can act as predictive maintenance by helping machinery owners detect potential failures such as additive depletion, breakdown, and contamination. This prevents costly damages and requires fewer frequent lubricant changes. Infrared spectroscopy is used alongside this practice for its rapid nature, revealing detailed chemical information about lubricants and enabling users to identify the sources of potential mechanical failures.
Schmitz explained that infrared spectroscopy works best with oxidation, contaminants, and additives. Further, he added that FTIR is a standard ASTM International technique for monitoring molecular breakdown and lubricant contamination. There are also two different data handling approaches: direct spectral analysis and new oil reference subtraction.
Schmitz also provided multiple examples of different components analyzed with the system, such as soot, carbon oxidation products, and diesel fuel, and their infrared regions of interest, which varied in value and peak location. He also showed data of the company’s Affirma software working with different submethods, such as direct and differential trend analysis, which can vary in difficulty and accuracy.
MIR Spectroscopy Validates Origin of Premium Brazilian Cachaças
June 11th 2025A recent study published in the journal Food Chemistry explored Brazil’s cachaça industry, focusing on a new analytical method that can confirm the geographic origin of cachaças from the Brejo Paraibano region in Brazil.
Bruce R. Kowalski: The Maverick Mind Behind Chemometrics
June 2nd 2025In this Icons of Spectroscopy article, Executive Editor Jerome Workman Jr. delves into the life and impact of Bruce Kowalski, an analytical chemist whose major contributions to chemometrics helped establish the field of applying advanced quantitative and qualitative mathematics to extract meaningful chemical information from complex datasets. Kowalski’s visionary approach to chemical data analysis, education, and software development has transformed the landscape of modern analytical chemistry for academia and industry.