John H. Kalivas a professor in the Department of Chemistry at Idaho State University has been named the winner of the 2023 EAS Award for Outstanding Achievements in Chemometrics. This award is presented to a significant individual who has made contributions to the advancement of chemometrics by superior work in developing theory, techniques, or instrumentation. The award was presented at a special symposium, arranged in honor of the awardee, at the 2023 Eastern Analytical Symposium on Monday, November 13, at 1:30 pm.
Kalivas obtained his PhD at the University of Washington in 1982 under the direction of Bruce Kowalski. After two temporary lectureship positions at University of Minnesota-Morris and Texas A&M University, he started his tenure track position at ISU in 1985. He has been named the Most Influential Professor eight times by graduating undergraduates receiving the ISU Outstanding Academic Achievement Award.
In 1994, he was named ISU Distinguished Researcher and awarded a Camille and Henry Dreyfus Scholar Award, a recognition given to early career researchers. In 2003 he was named a fellow of the International Union of Pure and Applied Chemistry (IUPAC). In 2021, he received the Idaho Jean’ne M. Shreeve NSF EPSCoR Research Excellence Award and the Society of Applied Spectroscopy Fellows Award in 2022.
Since 1990, 1993, 1998, and 2007, he has been respectively serving on the editorial boards for the Journal of Chemometrics, Analytical Letters, Applied Spectroscopy, and Talanta. He became an associate editor for Applied Spectroscopy in 2010, and an editor for the Journal of Chemometrics in 2013. In 2012, he spearheaded the formation of the Bruce R. Kowalski Award in Chemometrics administered by the Society of Applied Spectroscopy. He is the author or co-author of over 130 professional papers, book chapters, and books dealing with chemometrics.
Much of his research is focused on methodology developments for autonomous optimization of multivariate calibration and classification processes. He has also completed extensive work developing multivariate figures of merit. His recent work established model updating methods concentrating on transfer learning approaches using unlabeled data (transductive semi-supervised learning). These new processes include an autonomous model selection algorithm for up to three metaparameters (tuning parameters) specifically directed toward predicting analyte amounts in a collection of new target samples. Recent work also involved developing a new local modeling strategy that mines a spectral library leveraging hidden sample physicochemical and physiochemical properties to identify matrix matched calibration sample sets relative to predicting each new target sample. With his research team, he advanced a unique in-house fusion process that removes the optimization step for many classification methods.
His current focus is pushing the chemometric frontier using immersive analytics for virtual reality (VR) data visualization to produce new hybrid data analysis structures by combining the computer with human cognitive skills to make more efficient and accurate decisions. Immersive VR allows the user to see inside data configurations as well as feel the inherent data structure with haptic gloves. Presently, the focus is resolving complex classification situations where autonomous algorithms fail.
The program for the award symposium is as follows:
How Satellite-Based Spectroscopy is Transforming Inland Water Quality Monitoring
Published: April 29th 2025 | Updated: April 29th 2025New research highlights how remote satellite sensing technologies are changing the way scientists monitor inland water quality, offering powerful tools for tracking pollutants, analyzing ecological health, and supporting environmental policies across the globe.
Introduction to Satellite and Aerial Spectral Imaging Systems
April 28th 2025Modern remote sensing technologies have evolved from coarse-resolution multispectral sensors like MODIS and MERIS to high-resolution, multi-band systems such as Sentinel-2 MSI, Landsat OLI, and UAV-mounted spectrometers. These advancements provide greater spectral and spatial detail, enabling precise monitoring of environmental, agricultural, and land-use dynamics.
Best of the Week: AI and IoT for Pollution Monitoring, High Speed Laser MS
April 25th 2025Top articles published this week include a preview of our upcoming content series for National Space Day, a news story about air quality monitoring, and an announcement from Metrohm about their new Midwest office.
LIBS Illuminates the Hidden Health Risks of Indoor Welding and Soldering
April 23rd 2025A new dual-spectroscopy approach reveals real-time pollution threats in indoor workspaces. Chinese researchers have pioneered the use of laser-induced breakdown spectroscopy (LIBS) and aerosol mass spectrometry to uncover and monitor harmful heavy metal and dust emissions from soldering and welding in real-time. These complementary tools offer a fast, accurate means to evaluate air quality threats in industrial and indoor environments—where people spend most of their time.