We present a formulation for analysis of turbulent incompressible flows using a stabilized finite element method (FEM) based on the finite calculus (FIC) procedure. The stabilization terms introduced by the FIC approach allow to solve a wide range of fluid flow problems at different Reynolds numbers, including turbulent flows, without the need of a turbulence model. Examples of application of the FIC/FEM formulation to the analysis of 2D and 3D incompressible flows at large Reynolds numbers exhibiting turbulence features are presented.

E. Oñate, A. Franci, J. Carbonell. Lagrangian formulation for finite element analysis of quasi-incompressible fluids with reduced mass losses. Int. J. Numer. Meth. Fluids 74(10) (2014) DOI 10.1002/fld.3870

A. Belver, A. Iban, R. Rossi. Lock-in and drag amplification effects in slender line-like structures through CFD. Wind and Structures An International Journal 15(3) DOI 10.12989/was.2012.15.3.189

A. Franci, E. Oñate, J. Carbonell. On the effect of the bulk tangent matrix in partitioned solution schemes for nearly incompressible fluids. Int. J. Numer. Meth. Engng 102(3-4) (2014) DOI 10.1002/nme.4839

J. Garcia-Espinosa, A. Valls, E. Oñate. ODDLS: A new unstructured mesh finite element method for the analysis of free surface flow problems. Int. J. Numer. Meth. Engng 76(9) DOI 10.1002/nme.2348

E. Oñate, J. García-Espinosa, S. Idelsohn, B. Serván-Camas. Ship Hydrodynamics. (2017) DOI 10.1002/9781119176817.ecm2070

A. Franci. Unified Stabilized Formulation for Quasi-incompressible Materials. (2016) DOI 10.1007/978-3-319-45662-1_3

E. Oñate, M. Celigueta, S. Latorre, G. Casas, R. Rossi, J. Rojek. Lagrangian analysis of multiscale particulate flows with the particle finite element method. Comp. Part. Mech. 1(1) (2014) DOI 10.1007/s40571-014-0012-9

E. Oñate, A. Franci, J. Carbonell. A Particle Finite Element Method (PFEM) for Coupled Thermal Analysis of Quasi and Fully Incompressible Flows and Fluid-Structure Interaction Problems. (2014) DOI 10.1007/978-3-319-06136-8_6

O. Eugenio. Finite increment calculus (FIC): a framework for deriving enhanced computational methods in mechanics. Adv. Model. and Simul. in Eng. Sci. 3(1) (2016) DOI 10.1186/s40323-016-0065-9

U. Rasthofer, V. Gravemeier. Recent Developments in Variational Multiscale Methods for Large-Eddy Simulation of Turbulent Flow. Arch Computat Methods Eng 25(3) (2017) DOI 10.1007/s11831-017-9209-4

E. Oñate, J. Carbonell. Updated lagrangian mixed finite element formulation for quasi and fully incompressible fluids. Comput Mech 54(6) (2014) DOI 10.1007/s00466-014-1078-1

M. Kouhi, E. Oñate. An implicit stabilized finite element method for the compressible Navier–Stokes equations using finite calculus. Comput Mech 56(1) (2015) DOI 10.1007/s00466-015-1161-2