Yan’an University researchers publish findings in Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy about three new luminescent coordination polymers that could be used in environmental protection efforts.
Environmental sustainability and protection is a hot topic right now. Preserving the environment requires methods that can detect contaminants effectively. In a recent study published in Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, lead author Mei-Li Zhang and the research team at Yan’an University introduced three new luminescent coordination polymers (LCPs) designed to improve detection of environmental contaminants (1).
Earth Day eco concept with tropical forest background, natural forestation preservation scene with canopy tree in the wild, concept on sustainability and environmental renewable | Image Credit: © chokniti - stock.adobe.com
The study examined three LCPs. These three LCPs exhibited distinct structures, with LCP 1 and 3 forming in a one-dimensional (1D) structure, whereas LCP 2 takes on a two-dimensional (2D) structure (1). Utilizing phenylenediacetic acid isomers and 1,3,5-tris(1-imidazolyl) benzene (tib), the researchers synthesized these materials, each offering unique properties for pollutant detection (1).
LCP 2 received significant attention because it contained enhanced sensitivity to trace analytes. The reason for this is because LCP 2 had a larger specific surface area compared to LCPs 1 and 3 (1). The detection limits of LCP 2 for various contaminants, such as Fe3+, nitrobenzene (NB), chloramphenicol (CAP), and pyrimethanil (PTH) outperform existing literature values, demonstrating its potential as a highly effective fluorescent probe (1).
Real sample testing further validated the efficacy of LCP 2, showing spiked recoveries for the detection of pyrimethanil in grape skins, with minimal relative standard deviation (RSD) (1).
The fluorescence quenching mechanism observed in these LCPs is attributed to a combination of photoelectron transfer (PET), resonance energy transfer (RET), and competitive absorption (CA), elucidating the intricate processes underlying their sensing capabilities (1).
This article was written with the help of artificial intelligence and has been edited to ensure accuracy and clarity. You can read more about our policy for using AI here.
(1) Ma, Y.-F.; Liu, X.-L.; Lu, X.-Y.; Zhang, M.-L.; Ren, Y.-X.; Yang, X.-G. Zn-coordination Polymers for Fluorescence Sensing Various Contaminants in Water. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc. 2024, 309, 123803. DOI: 10.1016/j.saa.2023.123812
New Machine Learning Model Distinguishes Recycled PET with 10% Accuracy Threshold
June 9th 2025Researchers from Jinan University and Guangzhou Customs Technology Center have developed a cost-effective UV-vis spectroscopy and machine learning method to accurately identify recycled PET content as low as 10%, advancing sustainable packaging and circular economy efforts.
Microplastics Found in Deepest Reaches of Central Indian Ocean
May 28th 2025A new study published in Marine Pollution Bulletin reveals significant microplastic contamination at 5000-meter depths in the Central Indian Ocean Basin, highlighting the widespread reach of plastic pollution and the urgent need for regulatory action.
Fluorescence Spectroscopy Emerges as Rapid Screening Tool for Groundwater Contamination in Denmark
May 21st 2025A study published in Chemosphere by researchers at the Technical University of Denmark demonstrates that fluorescence spectroscopy can serve as a rapid, on-site screening tool for detecting pharmaceutical contaminants in groundwater.
China Institutions Team Up to Oxidize Toluene at Lower Temperatures
May 21st 2025Researchers from several Chinese universities have developed a low-cost, red mud-based catalyst doped with manganese oxides that efficiently oxidizes toluene at lower temperatures, offering a sustainable solution for air pollution control and industrial waste reuse.