All PublicationsSpectroscopySpectroscopy SupplementsApplication NotebookE-Books
All ColumnsAtomic PerspectivesChemometrics in SpectroscopyFocus on QualityIR Spectral Interpretation WorkshopIcons of SpectroscopyLasers and Optics InterfaceMolecular Spectroscopy Workbench
All NewsInterviewsSpectroscopy Sponsored News
All Application NotesAtomic SpectroscopyGeneralMass SpectrometryMolecular Spectroscopy
Conference CoverageConference Listing
Webcasts
ProductsE-BooksEventsPeer ExchangeAnalytically Speaking PodcastSponsored PodcastsSpecTubeSponsored ContentSponsored VideosAsk the ExpertsContent Engagement HubsInteractive Tools
SubscribeDirectory
Analytical Instrumentation
Analytical Method Validation
Analytical Theory
Annual Salary Survey
Atomic Absorption
Atomic Spectroscopy
Biological, Medical, and Clinical Analysis
Biopharmaceuticals Biotechnology and Protein Analysis
Cannabis Analysis
Corporate Profiles
Data Analytics, Statistics, Chemometrics, and Artificial Intelligence
Dietary Supplements Analysis
Energy, Petroleum, and Bio Energy
Environmental Analysis
Far-IR/Terahertz Spectroscopy
Fluorescence
Food and Beverage Analysis
Forensics, Narcotics
GC-MS
Homeland Security
ICP-MS
ICP-OES
Imaging
Infrared (IR) Spectroscopy
LC-MS
LIBS
Lasers and Laser-Source Technologies
Market Profiles
Mass Spectrometry
Molecular Spectroscopy
NMR
Near Infrared (NIR) Spectroscopy
Optics
Peer-reviewed Articles
Pharmaceutical Analysis
Plastics Polymers and Rubber
Portable and Handheld Spectroscopy
Process Control and Analysis
Quality Control/Quality Assurance (QA/QC)
Quality by Design (QbD)
Raman Spectroscopy
Regulatory Standards/GLP/GMP Compliance
Sample Preparation
Spectroscopy Interviews
Surface-enhanced Raman spectroscopy (SERS)
Technology Forum
Trends
Tutorials
UV-vis Spectroscopy
Vendor Tips & Tricks
Web of Science
X-ray Analysis
Spotlight -
  • Sulfur Analysis of Petrochemicals
  • ICP-MS Instrument Throughput
  • Food Lab Insights
IS1
  • Applied Clinical Trials

  • BioPharm International

  • Cannabis Science and Technology

  • Chromatography Online

  • Nutritional Outlook

  • Pharmaceutical Commerce

  • Pharmaceutical Executive

  • Pharm Tech

  • Spectroscopy Online

  • Turbo Machinery Magazine

Analytical Instrumentation
Analytical Method Validation
Analytical Theory
Annual Salary Survey
Atomic Absorption
Atomic Spectroscopy
Biological, Medical, and Clinical Analysis
Biopharmaceuticals Biotechnology and Protein Analysis
Cannabis Analysis
Corporate Profiles
Data Analytics, Statistics, Chemometrics, and Artificial Intelligence
Dietary Supplements Analysis
Energy, Petroleum, and Bio Energy
Environmental Analysis
Far-IR/Terahertz Spectroscopy
Fluorescence
Food and Beverage Analysis
Forensics, Narcotics
GC-MS
Homeland Security
ICP-MS
ICP-OES
Imaging
Infrared (IR) Spectroscopy
LC-MS
LIBS
Lasers and Laser-Source Technologies
Market Profiles
Mass Spectrometry
Molecular Spectroscopy
NMR
Near Infrared (NIR) Spectroscopy
Optics
Peer-reviewed Articles
Pharmaceutical Analysis
Plastics Polymers and Rubber
Portable and Handheld Spectroscopy
Process Control and Analysis
Quality Control/Quality Assurance (QA/QC)
Quality by Design (QbD)
Raman Spectroscopy
Regulatory Standards/GLP/GMP Compliance
Sample Preparation
Spectroscopy Interviews
Surface-enhanced Raman spectroscopy (SERS)
Technology Forum
Trends
Tutorials
UV-vis Spectroscopy
Vendor Tips & Tricks
Web of Science
X-ray Analysis
IS1
  • Applied Clinical Trials

  • BioPharm International

  • Cannabis Science and Technology

  • Chromatography Online

  • Nutritional Outlook

  • Pharmaceutical Commerce

  • Pharmaceutical Executive

  • Pharm Tech

  • Spectroscopy Online

  • Turbo Machinery Magazine

    • Webcasts
    • Subscribe
    • Directory
Advertisement

MIRTHE Workshop on Air Quality Monitoring Related to Energy Extraction Workshop Highlights Role of Mid-IR Spectroscopy

August 12, 2013
Article

The Mid-Infrared Technologies for Health and the Environment (MIRTHE) center hosted a workshop titled “Air Quality Monitoring Related to Energy Extraction†on Friday, August 9, 2013 at Princeton University (Princeton, New Jersey). The workshop was well attended and highlighted some of the key issues surrounding energy extraction.

The Mid-Infrared Technologies for Health and the Environment (MIRTHE) center hosted a workshop titled “Air Quality Monitoring Related to Energy Extraction” on Friday, August 9, 2013 at Princeton University (Princeton, New Jersey). The workshop was well attended and highlighted some of the key issues surrounding energy extraction and the use of mid-IR methods in measuring emissions from these activities.

The workshop opened with a brief welcome and overview of MIRTHE from Claire Gmachl, the MIRTHE director at Princeton University. Followed by that was the first presentation by Corrie Clark of the Environmental Science Division at Argonne National Laboratory in Argonne, Illinois, titled “Fracking 101 — Benefits, Opportunities, and Future Challenges.” Clark went over the basics of this energy extraction technique for shale gas, usually referred to as “fracking” because of the network of fractures that are created within the Earth’s crust. The talk gave the audience a lot of information that proved useful for the rest of the day’s presentations. Clark also went over the environmental impacts fracking can have on air, water, and land, as well as solutions and policy changes that are being examined.

The second presentation, “Technology Trends for the Hydraulic Fracturing of Unconventional Reservoirs,” was given by Alejando Pena of Schlumberger in Sugar Land, Texas. Pena discussed the overall market for this energy source and the future outlook for the United States to become a world leader in it. He also explained new technologies that his company is developing to help safely frack new sites, including a microseismic mapping tool for what he termed “fracture modeling.” This technology would reportedly enable users to determine safe locations to drill into the Earth and help predict the locations of the fractures. It would also result in a significant savings on proppant (a solid material, typically treated sand or man-made ceramic materials, designed to keep an induced hydraulic fracture open, during or following a fracturing treatment), water, and trucking use.

Michael Wojcik of the Space Dynamics Laboratory at Utah State University Research Foundation in Logan, Utah, gave the next talk, titled “Understanding the Regulatory Context for Fugitive Emissions Measurement.” Wojcik explained some of the issues regulators face with fracking, such as short timeframes to gather massive amounts of data that are validated by Environmental Protection Agency (EPA) methods. He also explained that in the United States each state has different rules and regulations for fracking. For instance, Utah does not have many regulations in place right now, whereas Colorado and Wyoming are much more restrictive in what they allow.

The afternoon sessions focused on the state of the art and potential for new monitoring solutions. The first afternoon talk, “Open-Path Methane Sensing Across an Artic Lake,” was given by Anna P.M. Michel of the Department of Applied Ocean Physics and Engineering at Woods Hole Oceanographic Institution in Woods Hole, Massachusetts. Michel’s talk focused on naturally occurring sources of methane, which are often poorly quantified. Research has shown that ebullition (bubbling) and warming environments are the biggest reasons for lakes emitting methane. Michel discussed the open-path, long (> 1 km) integrated path quantum cascade laser-based methane sensor to characterize the spatial and temporal variability of methane emissions at Toolik Lake in Alaska that her group developed.

“Current and Emerging Laser Sensors for Greenhouse Gas Detection and Monitoring,” was the next talk, given by Michael B. Frish of Physical Sciences, Inc., in Andover, Massachusetts. Frish described the various lasers that are available today and the work he has been doing to monitor greenhouse gas emissions of methane and carbon dioxide. He posed a challenge to the community to work on creating a chip-based tunable diode laser absorption spectroscopy (TDLAS) instrument, as small as a cell phone and using wireless communication. Frish stressed that technology such as that is possible to achieve and would help drive down costs for companies to self-monitor their emissions.

Leigh Bromley of Daylight Solutions in San Diego, California, gave the next talk, titled “State of the Art Mid-IR QCL Systems & Applications — Potential for New Monitoring System Solutions.” Bromley highlighted the instruments offered by his company and the various opportunities they present to users. He cited new research by Charles Harb of the University of New South Wales, Australia, in which Harb is using Daylight Solution’s pulsed cavity ringdown spectroscopy (CDRS) instrument for environmental applications and the detection of improvised explosive devices (IEDs).

Mark A. Zondlo gave the final presentation of the day, titled “Shale Gas Fugitive Methane Emissions Using UAV- and Vehicle-Based Sensors.” Zondlo explained that the transition from coal to natural gas sources of energy should be beneficial for the Earth’s climate because natural gas combustion produces only half the carbon dioxide emissions compared to coal on a per unit energy basis. However, a cause for concern is the fact that fugitive methane emissions from the exploration and production sector of the oil and gas industry range from about 3–9% of the total field production and methane is 25 times more potent as a greenhouse gas on a per molecule basis then carbon dioxide. Zondlo stressed that methane emissions above 1% would negate any positive climate benefits of switching from coal to natural gas. To measure these emissions more closely, Zondlo and his group have developed vertical cavity and quantum cascade laser-based systems on unmanned aerial vehicles and passenger cars. His research thus far has included field studies to identify and quantify emissions from case studies of wells on the Barnett, Marcellus, and Monterey shale sites. Zondlo explained that they use high-resolution mapping to chemically fingerprint sources from gas and oil extraction, landfills, natural wetlands, and combustion.

The workshop concluded with a panel discussion with all of the speakers. For more information on this subject, or to see speaker’s slides, visit the MIRTHE website: www.mirthecenter.org

Recent Videos
The Big Island's Kohala Coast with the dormant volcano of Hualalai in the distance | Image Credit: © Kyo46 - stock.adobe.com
The Big Island's Kohala Coast with the dormant volcano of Hualalai in the distance | Image Credit: © Kyo46 - stock.adobe.com
North Coast of the Big Island, area near the Pololu valley, Hawaii | Image Credit: © Dudarev Mikhail - stock.adobe.com.
North Lake Tahoe Sunset | Image Credit: © adonis_abril - stock.adobe.com
Beautiful Day in Lake Tahoe, California | Image Credit: Jeremy Janus - stock.adobe.com
Sand Harbor Lake Tahoe Nevada | Image Credit: © Stephen - stock.adobe.com.
Baltimore Downtown Skyline Panorama | Image Credit: © Stefan - stock.adobe.com
Hand scooping up a mixture of sand and microplastics from the shore, theme of pollution. Generated using AI. | Image Credit: © nabila - stock.adobe.com.
Jeanette Grasselli Brown 
Jeanette Grasselli Brown 
Related Content

Artificial intelligence accelerates molecular vibration analysis, study finds © Tierney-chronicles-stock.adobe.com

Artificial Intelligence Accelerates Molecular Vibration Analysis, Study Finds

Jerome Workman, Jr.
July 1st 2025
Article

A new review led by researchers from MIT and Oak Ridge National Laboratory outlines how artificial intelligence (AI) is transforming the study of molecular vibrations and phonons, making spectroscopic analysis faster, more accurate, and more accessible.


twitter-819466-1408538616786.jpg

Combining Spectroscopic and Chromatographic Techniques

August 1st 2013
Podcast

An interview with Charles Wilkins, the winner of the 2013 American Chemical Society Division of Analytical Chemistry Award in Chemical Instrumentation, sponsored by the Dow Chemical Company.


Unsolved Problems in Spectroscopy - Part 1

Toward a Generalizable Model of Diffuse Reflectance in Particulate Systems

Jerome Workman, Jr.
June 30th 2025
Article

This tutorial examines the modeling of diffuse reflectance (DR) in complex particulate samples, such as powders and granular solids. Traditional theoretical frameworks like empirical absorbance, Kubelka-Munk, radiative transfer theory (RTT), and the Hapke model are presented in standard and matrix notation where applicable. Their advantages and limitations are highlighted, particularly for heterogeneous particle size distributions and real-world variations in the optical properties of particulate samples. Hybrid and emerging computational strategies, including Monte Carlo methods, full-wave numerical solvers, and machine learning (ML) models, are evaluated for their potential to produce more generalizable prediction models.


twitter-778079-1408603001414.jpg

Bioprocess Monitoring with Ultrasound-Enhanced ATR Mid-IR Spectroscopy

June 18th 2012
Podcast

Bernhard Lendl and Cosima Koch of the Vienna University of Technology have developed a new method for on-line monitoring of fermentations using mid-infrared spectroscopy.


A close-up view of ultraviolet light sterilization © Dounonji -chronicles-stock.adobe.com

Polystyrene and UVC Sterilization Tested with Spectroscopy and Luminescence Tools

Jerome Workman, Jr.
June 25th 2025
Article

A team of researchers from Spanish institutions has found that polystyrene used in healthcare packaging shows strong resistance to UVC sterilization, with minimal chemical degradation detected using FT-IR and Raman spectroscopy.


Geraldine L. Richmond

Geraldine Richmond Reflects on Her Research and NYSAS Gold Medal Win

Jerome Workman, Jr.
June 23rd 2025
Article

The recipient of the 2025 NYSAS Gold Medal Award is Geraldine L. Richmond, Presidential Chair in Science and Professor of Chemistry at the University of Oregon.

Related Content

Artificial intelligence accelerates molecular vibration analysis, study finds © Tierney-chronicles-stock.adobe.com

Artificial Intelligence Accelerates Molecular Vibration Analysis, Study Finds

Jerome Workman, Jr.
July 1st 2025
Article

A new review led by researchers from MIT and Oak Ridge National Laboratory outlines how artificial intelligence (AI) is transforming the study of molecular vibrations and phonons, making spectroscopic analysis faster, more accurate, and more accessible.


twitter-819466-1408538616786.jpg

Combining Spectroscopic and Chromatographic Techniques

August 1st 2013
Podcast

An interview with Charles Wilkins, the winner of the 2013 American Chemical Society Division of Analytical Chemistry Award in Chemical Instrumentation, sponsored by the Dow Chemical Company.


Unsolved Problems in Spectroscopy - Part 1

Toward a Generalizable Model of Diffuse Reflectance in Particulate Systems

Jerome Workman, Jr.
June 30th 2025
Article

This tutorial examines the modeling of diffuse reflectance (DR) in complex particulate samples, such as powders and granular solids. Traditional theoretical frameworks like empirical absorbance, Kubelka-Munk, radiative transfer theory (RTT), and the Hapke model are presented in standard and matrix notation where applicable. Their advantages and limitations are highlighted, particularly for heterogeneous particle size distributions and real-world variations in the optical properties of particulate samples. Hybrid and emerging computational strategies, including Monte Carlo methods, full-wave numerical solvers, and machine learning (ML) models, are evaluated for their potential to produce more generalizable prediction models.


twitter-778079-1408603001414.jpg

Bioprocess Monitoring with Ultrasound-Enhanced ATR Mid-IR Spectroscopy

June 18th 2012
Podcast

Bernhard Lendl and Cosima Koch of the Vienna University of Technology have developed a new method for on-line monitoring of fermentations using mid-infrared spectroscopy.


A close-up view of ultraviolet light sterilization © Dounonji -chronicles-stock.adobe.com

Polystyrene and UVC Sterilization Tested with Spectroscopy and Luminescence Tools

Jerome Workman, Jr.
June 25th 2025
Article

A team of researchers from Spanish institutions has found that polystyrene used in healthcare packaging shows strong resistance to UVC sterilization, with minimal chemical degradation detected using FT-IR and Raman spectroscopy.


Geraldine L. Richmond

Geraldine Richmond Reflects on Her Research and NYSAS Gold Medal Win

Jerome Workman, Jr.
June 23rd 2025
Article

The recipient of the 2025 NYSAS Gold Medal Award is Geraldine L. Richmond, Presidential Chair in Science and Professor of Chemistry at the University of Oregon.

About
Advertise
Author Guidelines
Contact Us
Editorial Advisory Board
Ethics Statement
Do Not Sell My Personal Info
Permissions
Privacy Policy
Subscriptions
Terms and Conditions
Contact Info

2 Commerce Drive
Cranbury, NJ 08512

609-716-7777

© 2025 MJH Life Sciences

All rights reserved.