Arianna Bresci of the Massachusetts Institute of Technology (MIT) in Cambridge, Massachusetts, USA recently held a presentation at SPIE Photonics West on how combining Raman spectroscopy with holo-tomography can help scientists monitor early embryonic development (1).
Bresci’s team used this combined system to monitor events occurring within the first four days of mice embryo development. This time frame is ideal for using stem cells in regenerative medicine. The researchers analyzed pluripotent stem cells, which then split into ectoderm and endoderm cells. While previous studies used traditional omics techniques to study these cells, Bresci and her group used a morpho-molecular study that focused on using microscopy and studying morpho-chemistry. This approach is both quantitative and non-destructive/non-perturbative. Raman vibrational spectroscopy was used for this experiment because it analyzes cells at higher and lower energy modes (with the focus being on the lower-energy region since there is more information to find within this region).
“This technique allows you to have good signal-to-noise ratio measurements in this region,” Bresci said (1). Raman was combined with three-dimensional holotomography, a laser technique meant to image a microscopic and label-free 3D object, such as tissues or cells, in real time (2). This combination was used to study chemical and morphological rearrangements, respectively, of non-perturbed embryonic cells over the exit from pluripotency (3). Studying the cells over 4 days allows the scientists to observe the nature and timeline of morpho-chemical changes that determine cell diversity in embryos. Bresci and her team intend to further this research by training a machine learning model to understand data found through this sort of experiment. The search for rapid and accurate results in this field can help further our understanding of how embryos develop early on.
(1) Bresci, A. Merging Label-Free Raman Spectroscopy and Holo-Tomography to Monitor the Morpho-Chemistry of Early Embryonic Development. In SPIE Photonics West, San Francisco, California, USA, January 30–31, 2024.
(2) Greenwood, M. What is Holotomography? AZoNetwork 2018. https://www.news-medical.net/life-sciences/What-is-Holotomography.aspx (accessed 2023-2-14)
(3) Bresci, A. Merging label-free Raman spectroscopy and holotomography to monitor the morpho-chemistry of early embryonic differentiation. SPIE 2024. https://spie.org/photonics-west/presentation/Merging-label-free-Raman-spectroscopy-and-holotomography-to-monitor-the/12846-27#_=_ (accessed 2023-2-14)
Get essential updates on the latest spectroscopy technologies, regulatory standards, and best practices—subscribe today to Spectroscopy.
Rapid Sweetener Detection Achieved Through Raman Spectroscopy and Machine Learning
July 10th 2025Researchers at Heilongjiang University have developed a rapid and accurate method for detecting sweeteners in food using Raman spectroscopy combined with a Random Forest machine learning algorithm, offering a powerful tool for improving food safety.
AI Boosts SERS for Next Generation Biomedical Breakthroughs
July 2nd 2025Researchers from Shanghai Jiao Tong University are harnessing artificial intelligence to elevate surface-enhanced Raman spectroscopy (SERS) for highly sensitive, multiplexed biomedical analysis, enabling faster diagnostics, imaging, and personalized treatments.
Nanometer-Scale Studies Using Tip Enhanced Raman Spectroscopy
February 8th 2013Volker Deckert, the winner of the 2013 Charles Mann Award, is advancing the use of tip enhanced Raman spectroscopy (TERS) to push the lateral resolution of vibrational spectroscopy well below the Abbe limit, to achieve single-molecule sensitivity. Because the tip can be moved with sub-nanometer precision, structural information with unmatched spatial resolution can be achieved without the need of specific labels.
Artificial Intelligence Accelerates Molecular Vibration Analysis, Study Finds
July 1st 2025A new review led by researchers from MIT and Oak Ridge National Laboratory outlines how artificial intelligence (AI) is transforming the study of molecular vibrations and phonons, making spectroscopic analysis faster, more accurate, and more accessible.
Machine Learning and Optical Spectroscopy Advance CNS Tumor Diagnostics
July 1st 2025A new review article highlights how researchers in Moscow are integrating machine learning with optical spectroscopy techniques to enhance real-time diagnosis and surgical precision in central nervous system tumor treatment.