Jeanette Grasselli Brown is undoubtedly an icon of spectroscopy. Her story is one of perseverance—forging a path for herself at a time where few women were able to get ahead in science.
The child of Hungarian immigrants, Grasselli Brown grew up in Cleveland Ohio. She can trace her interest in learning and chemistry all the way back to her childhood. In 1950, Grasselli Brown earned her bachelor’s degree in chemistry from Ohio University. After college, she took a job as a research chemist at BP, formerly Standard Oil, eventually becoming the director of Corporate Research and Analytical Science.
Grasselli Brown's expertise includes vibrational spectroscopy, combined instrumental techniques, computerized spectroscopy, process analysis and control, and environmental spectroscopy. Today, she holds 13 honorary degrees, including an Honorary Doctor of Science degree from Ohio University, her alma mater. The university offers an undergraduate research award in her honor. Grasselli Brown also holds one patent and has published 80 papers and nine books in the field of infrared and Raman spectroscopy. She was the editor of the journal Vibrational Spectroscopy from 1989-1995.
As part of Spectroscopy’s Icons of Spectroscopy Laureate Series, associate editorial director Caroline Hroncich sat down with Jeanette Grasselli Brown to discuss her career in spectroscopy. In the first of this multi-part interview, Grasselli Brown talks about her childhood, her love of chemistry, and her work at Standard Oil.
How Satellite-Based Spectroscopy is Transforming Inland Water Quality Monitoring
Published: April 29th 2025 | Updated: April 29th 2025New research highlights how remote satellite sensing technologies are changing the way scientists monitor inland water quality, offering powerful tools for tracking pollutants, analyzing ecological health, and supporting environmental policies across the globe.
Introduction to Satellite and Aerial Spectral Imaging Systems
April 28th 2025Modern remote sensing technologies have evolved from coarse-resolution multispectral sensors like MODIS and MERIS to high-resolution, multi-band systems such as Sentinel-2 MSI, Landsat OLI, and UAV-mounted spectrometers. These advancements provide greater spectral and spatial detail, enabling precise monitoring of environmental, agricultural, and land-use dynamics.
Karl Norris: A Pioneer in Optical Measurements and Near-Infrared Spectroscopy, Part II
April 21st 2025In this two-part "Icons of Spectroscopy" column, executive editor Jerome Workman Jr. details how Karl H. Norris has impacted the analysis of food, agricultural products, and pharmaceuticals over six decades. His pioneering work in optical analysis methods including his development and refinement of near-infrared spectroscopy, has transformed analysis technology. In this Part II article of a two-part series, we summarize Norris’ foundational publications in NIR, his patents, achievements, and legacy.
AI-Powered SERS Spectroscopy Breakthrough Boosts Safety of Medicinal Food Products
April 16th 2025A new deep learning-enhanced spectroscopic platform—SERSome—developed by researchers in China and Finland, identifies medicinal and edible homologs (MEHs) with 98% accuracy. This innovation could revolutionize safety and quality control in the growing MEH market.