Non-Destructive Raman Spectroscopy Revolutionizes Monoclonal Antibody Drug Substance Identification

Article

Researchers have developed a non-destructive method for identifying monoclonal antibody drug substances using Raman spectroscopy.

A recent study conducted at the University of Limerick in Ireland and published in Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy describes a new method for identifying monoclonal antibody drug substances using Raman spectroscopy (1).

Human monoclonal antibody that blocks SARS-CoV infection. Virus neutralization therapy. | Image Credit: © Pandagolik - stock.adobe.com

Human monoclonal antibody that blocks SARS-CoV infection. Virus neutralization therapy. | Image Credit: © Pandagolik - stock.adobe.com

Monoclonal antibodies are widely recognized for their exceptional specificity and efficacy in treating chronic diseases. However, their complex structure poses a challenge when it comes to accurately identifying these protein-based therapeutics. Traditional analytical techniques such as sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE), enzyme linked immunosorbent assays (ELISA), high-performance liquid chromatography (HPLC), and mass spectrometry (MS) require extensive sample preparation and removal from their containers, leading to potential contamination and sample waste (1). Additionally, these methods often involve time-consuming processes that can take several days to complete (1).

Raman spectroscopy was used to overcome the limitations of traditional analytical techniques. As a nondestructive technique, Raman spectroscopy allows the user to identify substances based on their molecular vibrations (1). Lead author Sarah P. Hudson and her team successfully identified three monoclonal antibody drug substances without the need for sample removal or extensive preparation by using chemometrics in combination with Raman spectroscopy (1).

The team also explored variables such as laser exposure, multiple freeze–thaw cycles, and time spent outside refrigeration, to see how they influenced monoclonal antibody stability. They found that Raman spectroscopy, under less-than-ideal conditions, was able to accurately identify the protein-based drug substances using Raman spectroscopy (1).

The implications of this research for the biopharmaceutical industry are significant. The non-destructive nature of Raman spectroscopy ensures that valuable samples remain intact and can be further utilized, reducing waste and the need for additional production. Moreover, the rapidity of this technique provides a time-efficient solution for drug substance identification, streamlining the manufacturing process.

The findings show that there is a better method to use when identifying monoclonal antibody drug substances. Unlike traditional methods, Raman spectroscopy helps make identification more efficient, less resource-intensive, and faster (1). As a result, this study reveals a new advancement in biopharmaceutical analysis, showing how Raman spectroscopy can be used in more applications, including potentially in manufacturing and quality control processes.

Reference

(1) Shukla, M. K.; Wilkes, P.; Bargary, N.; Meagher, K.; Khamar, D.; Bailey, D.; Hudson, S. P. Identification of monoclonal antibody drug substances using non-destructive Raman spectroscopy. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc. 2023, 299, 122872. DOI: 10.1016/j.saa.2023.122872