Researchers have created a flexible SERS substrate based on Au nanostars and PDMS, enabling highly sensitive detection of thiram residue in apple juice. The innovative substrate offers a reliable method for ensuring food safety by accurately identifying pesticide contaminants.
A research team at Southeast University have developed a novel fabrication method for a flexible surface-enhanced Raman scattering (SERS) substrate, capable of selectively and sensitively detecting thiram residue in fruits and juices. The team’s research was published in Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy (1).
flying slices of apple and apple juice | Image Credit: © nata_vkusidey - stock.adobe.com
The team utilized gold nanostars (Au NSs) with a multi-branching structure, which were self-assembled on aminated polydimethylsiloxane (PDMS) slides through electrostatic interaction. The SERS method employed the characteristic peak intensity of thiram at 1371 cm−1 to differentiate it from other pesticide residues. A linear relationship between the peak intensity at 1371 cm−1 and thiram concentration was established within the range of 0.01 ppm to 100 ppm, with a limit of detection (LOD) of 0.0048 ppm.
To validate the practicality of the SERS substrate, the researchers directly employed it to detect thiram in apple juice. The standard addition method was utilized, yielding recoveries ranging from 97.05% to 106.00%, with relative standard deviations (RSD) between 3.26% and 9.35%. The SERS substrate exhibited remarkable sensitivity, stability, and selectivity for thiram detection in food samples, making it a potential common method for pesticide detection in various food products.
The development of this flexible SERS substrate offers significant advantages in the field of food safety. The detection of pesticide residues in fruits and juices is of utmost importance, as consumers increasingly demand safe and contaminant-free food. Thiram, a widely used fungicide, has been under scrutiny due to its potential health risks. Therefore, having a reliable and sensitive method for thiram detection is crucial for ensuring the safety and quality of apple juice and other fruit-based products.
The research conducted by Anran Liu and the team at Southeast University provides a promising solution to address the challenges associated with thiram detection in food samples. The flexible SERS substrate, based on Au nanostars and PDMS, exhibits excellent performance characteristics, enabling rapid and accurate analysis. This innovative approach holds great potential for implementation in the food industry and regulatory bodies to ensure the safety and integrity of our food supply.
Further research and development in this area may lead to advancements in SERS technology, allowing for the detection of other pesticide residues and contaminants. By continually improving detection methods, scientists and researchers can contribute to a safer and healthier food system for consumers worldwide.
(1) Zhang, Y.; Wang, Y.; Liu, A.; Liu, S.Fabrication of flexible SERS substrate based on Au nanostars and PDMS for sensitive detection of Thiram residue in apple juice. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc. 2023, 297, 122721. DOI: 10.1016/j.saa.2023.122721
Tip-enhanced Raman Scattering using a Chemically-modified Tip
June 9th 2025In this tutorial article, Yukihiro Ozaki explores the recent advancements and broadening applications of tip-enhanced Raman scattering (TERS), a cutting-edge technique that integrates scanning probe microscopy (SPM) with surface-enhanced Raman scattering (SERS). TERS enables highly localized chemical analysis at the nano- to subnano-scale, achieving spatial resolution well beyond the diffraction limit of light. Ozaki highlights the versatility of TERS in various experimental environments—ranging from ambient air to ultrahigh vacuum and electrochemical systems—and its powerful utility in fields such as single-molecule detection, biomolecular mechanism studies, nanomaterial characterization, and high-resolution imaging.
Machine Learning Accelerates Clinical Progress of SERS Technology
May 22nd 2025A new review in TrAC Trends in Analytical Chemistry by Alfred Chin Yen Tay and Liang Wang highlights how machine learning (ML) is transforming surface-enhanced Raman spectroscopy (SERS) into a powerful, clinically viable tool for rapid and accurate medical diagnostics.
New SERS Platform Enhances Real-Time Detection of Cardiovascular Drugs in Blood
May 13th 2025Researchers at Harbin Medical University recently developed a SERS-based diagnostic platform that uses DNA-driven “molecular hooks” and AI analysis to enable real-time detection of cardiovascular drugs in blood while eliminating interference from larger biomolecules.
The Rise of Smart Skin Using AI-Powered SERS Wearable Sensors for Real-Time Health Monitoring
May 5th 2025A new comprehensive review explores how wearable plasmonic sensors using surface-enhanced Raman spectroscopy (SERS) are changing the landscape for non-invasive health monitoring. By combining nanotechnology, AI, and real-time spectroscopy analysis to detect critical biomarkers in human sweat, this integration of nanomaterials, flexible electronics, and AI is changing how we monitor health and disease in real-time.
AI-Powered SERS Spectroscopy Breakthrough Boosts Safety of Medicinal Food Products
April 16th 2025A new deep learning-enhanced spectroscopic platform—SERSome—developed by researchers in China and Finland, identifies medicinal and edible homologs (MEHs) with 98% accuracy. This innovation could revolutionize safety and quality control in the growing MEH market.