A new method for detecting adulterated milk could lead to analyzing other food products more effectively.
Milk is a vital source of nutrients for human beings. However, milk adulteration is a persistent problem in many countries. It not only reduces the nutritional value of milk, but it can also has health risks to consumers. Therefore, the development of a simple, reliable, and rapid detection method for adulterated milk is of great significance (1). In a recent study published in Spectroscopy Letters, researchers Xin Li and Jiangping Liu proposed a novel method for analyzing adulterated milk based on a long short-term memory network (1).
The study involved the use of near-infrared (NIR) hyperspectral data to carry out qualitative and quantitative analysis of adulterated milk (1). The team used principal component analysis (PCA) combined with a long short-term memory network to identify the adulterated milk samples (1). The NIR hyperspectral data was collected in the range of 400–1000 nm (1).
The feasibility of the proposed method for identifying adulterated milk was proven by its high accuracy. The method had an average recognition rate of 99.5% for the test set and 98.5% for the validation set (1). The study also demonstrated that employing PCA and long short-term memory network was effective in reducing the dimensionality of the NIR hyperspectral data (1). This, in turn, helped improve analysis accuracy (1).
The researchers' proposed method offers several advantages over the existing methods. First, and according to the study, it is nondestructive, meaning that the milk samples can be reused after analysis (1). Second, the method is relatively simple, requiring only a small amount of milk and a hyperspectral analyzer (1). And finally, the method is efficient because the analysis can be completed within a few minutes (1). Therefore, the proposed method would be beneficial for supply chains and milk production facilities where this technique would be best applied to inspect the beverage for adulteration.
In summary, this study paves the way for the development of more efficient, reliable, and low-cost methods for detecting milk adulteration. The authors suggest that future studies can focus on the application of the proposed method in the analysis of other food products (1). In conclusion, the proposed method provides a practical and effective solution to the persistent problem of milk adulteration, ensuring the safety and quality of milk products for consumers.
(1) Li, X.; Liu, J. Analysis of Adulterated Milk Based on a Long Short-term Memory Network. Spec. Lett. 2023. DOI: 10.1080/00387010.2023.2194950
New NIR/Raman Remote Imaging Reveals Hidden Salt Damage in Historic Fort
June 10th 2025Researchers have developed an analytical method combining remote near-infrared and Raman spectroscopy with machine learning to noninvasively map moisture and salt damage in historic buildings, offering critical insight into ongoing structural deterioration.
Harnessing Near-Infrared Spectroscopy and Machine Learning to Detect Microplastics in Chicken Feed
June 5th 2025Researchers from Tianjin Agricultural University, Nankai University, and Zhejiang A&F University have developed a highly accurate method using near-infrared spectroscopy and machine learning to rapidly detect and classify microplastics in chicken feed.
How Diffuse Reflectance Spectroscopy Is Advancing 3D Metal Printing
June 4th 2025Researchers at Wroclaw University of Science and Technology and Université catholique de Louvain have demonstrated how diffuse reflectance spectroscopy (DRS) in the 900 nm to 1100 nm range can non-destructively assess powder blend homogeneity in metal additive manufacturing. Their findings suggest that DRS offers a fast, reliable method for ensuring uniformity in aluminum alloy powders used in powder bed fusion 3D printing.