Here, we spotlight a few recent studies that explored the integration of artificial intelligence (AI) with spectroscopic techniques.
Artificial intelligence (AI) is a hot topic in the scientific community. Apart from helping to refine and automate data analysis, AI has routinely begun to be integrated with spectroscopy, allowing AI to be used in different applications and for different purposes (1).
Given the ascendency of AI in various industries, Spectroscopy magazine has been dedicated to covering recent studies that have used AI models and tools in combination with spectroscopic techniques. Here, we highlight a few of the most recent studies conducted recently by researchers around the world. Happy reading!
Revolutionizing Analytical Chemistry: The AI Breakthrough
This article explores how artificial intelligence (AI) is revolutionizing analytical chemistry by improving data analysis and optimizing experimental methods. It highlights AI's transformative potential, current challenges, and future directions, while stressing the importance of ethical considerations in its application (1).
Light and AI Unite: Raman Breakthrough in Noninvasive Lung Cancer Detection
This article discusses the leading cause of cancer-related deaths, lung cancer, and the urgent need for better diagnostic methods. Traditional approaches are invasive, costly, and slow, often delaying treatment (2). The study from the journal ACS Omega explores Raman spectroscopy as a noninvasive alternative. Researchers analyzed blood plasma samples from lung cancer patients and healthy individuals using various machine learning (ML) models, achieving accuracies of 0.77 to 0.85 and area under the curve-receiver operating characteristic (AUC-ROC) scores of 0.85 to 0.94 (2). Hybrid models, combining dimensionality reduction and feature selection, showed the highest accuracy. The findings highlight Raman spectroscopy's potential as a rapid, cost-effective diagnostic tool, potentially revolutionizing lung cancer detection and other medical diagnostics (2).
Optimizing AI Models for Raman Spectroscopy: Improving Disease Diagnosis
This article discusses a study from Analytical Chemistry that demonstrates how optimizing AI models with Raman spectroscopy enhances disease diagnosis. Raman spectroscopy, a tool for biomolecular analysis, is integrated with AI and machine learning to improve diagnostic methods for diseases like Alzheimer's (3). Researchers from Capital Medical University and Beihang University, led by Limin Feng and Shuhua Yue, evaluated AI models (for example, PCA-SVM, SVM, UMAP-SVM, ResNet, AlexNet) on diverse Raman spectral data sets, including endometrial carcinoma, hepatoma extracellular vesicles, bacteria, melanoma cells, and diabetic skin. By adjusting network parameters, they improved diagnostic accuracy significantly—for instance, endometrial carcinoma detection accuracy increased from 85.1% to 94.6% (3). The study highlights AI's potential in enhancing Raman spectroscopy's diagnostic capabilities, emphasizing the need to tailor AI models to specific spectral data characteristics, leading to more accurate, efficient, and reliable pathological diagnoses (3).
An Inside Look at the Implementation of Artificial Intelligence in Surface-Enhanced Raman Spectroscopy Applications
This article discusses a review in Small Methods on the integration of artificial intelligence (AI) with surface-enhanced Raman spectroscopy (SERS) to advance biomedicine, environmental protection, and food safety (4). SERS, known for its sensitivity and specificity in detecting low-concentration substances, generates complex data that challenges traditional analysis methods. Researchers at Shanghai Jiao Tong University, led by Zhou Chen and Jian Ye, highlight AI's potential to optimize SERS by improving substrate design, synthetic routes, instrumentation, and data analysis (4). AI's pattern recognition capabilities can handle large datasets, enhancing the efficiency and accuracy of SERS applications. The integration of AI with SERS is poised to revolutionize the field, although challenges such as the need for high-quality data and user-friendly tools remain (4). The review emphasizes the importance of continued investment in AI to fully harness its potential in enhancing SERS and other analytical techniques.
(1) Workman, Jr., J. Revolutionizing Analytical Chemistry: The AI Breakthrough. Spectroscopy. Available at: https://www.spectroscopyonline.com/view/revolutionizing-analytical-chemistry-the-ai-breakthrough (accessed 2024-07-15).
(2) Workman, Jr., J. Light and AI Unite: Raman Breakthrough in Noninvasive Lung Cancer Detection. Spectroscopy. Available at: https://www.spectroscopyonline.com/view/light-and-ai-unite-raman-breakthrough-in-noninvasive-lung-cancer-detection (accessed 2024-07-15).
(3) Wetzel, W. Optimizing AI Models for Raman Spectroscopy: Improving Disease Diagnosis. Spectroscopy. Available at: https://www.spectroscopyonline.com/view/optimizing-ai-models-for-raman-spectroscopy-improving-disease-diagnosis (accessed 2024-07-15).
(4) Wetzel, W. An Inside Look at the Implementation of Artificial Intelligence in Surface-Enhanced Raman Spectroscopy Applications. Spectroscopy. Available at: https://www.spectroscopyonline.com/view/an-inside-look-at-the-implementation-of-artificial-intelligence-in-surface-enhanced-raman-spectroscopy-applications (accessed 2024-07-15).
AI, Deep Learning, and Machine Learning in the Dynamic World of Spectroscopy
December 2nd 2024Over the past two years Spectroscopy Magazine has increased our coverage of artificial intelligence (AI), deep learning (DL), and machine learning (ML) and the mathematical approaches relevant to the AI topic. In this article we summarize AI coverage and provide the reference links for a series of selected articles specifically examining these subjects. The resources highlighted in this overview article include those from the Analytically Speaking podcasts, the Chemometrics in Spectroscopy column, and various feature articles and news stories published in Spectroscopy. Here, we provide active links to each of the full articles or podcasts resident on the Spectroscopy website.
Diffuse Reflectance Spectroscopy to Advance Tree-Level NSC Analysis
November 28th 2024Researchers have developed a novel method combining near-infrared (NIR) and mid-infrared (MIR) diffuse reflectance spectroscopy with advanced data fusion techniques to improve the accuracy of non-structural carbohydrate estimation in diverse tree tissues, advancing carbon cycle research.
Young Scientist Awardee Uses Spectrophotometry and AI for Pesticide Detection Tool
November 11th 2024Sirish Subash is the winner of the Young Scientist Award, presented by 3M and Discovery education. His work incorporates spectrophotometry, a nondestructive method that measures the light of various wavelengths that is reflected off fruits and vegetables.
Emerging Leader Highlights Innovations in Machine Learning, Chemometrics at SciX Awards Session
October 23rd 2024Five invited speakers joined Joseph Smith, the 2024 Emerging Leader in Molecular Spectroscopy, on stage to speak about trends in hyperspectral imaging, FT-IR, surface enhanced Raman spectroscopy (SERS), and more during the conference in Raleigh.
Advancing Forensic Science with Chemometrics: New Tools for Objective Evidence Analysis
October 22nd 2024A review by researchers from Curtin University comprehensively explores how chemometrics can revolutionize forensic science by offering objective and statistically validated methods to interpret evidence. The chemometrics approach seeks to enhance the accuracy and reliability of forensic analyses, mitigating human bias and improving courtroom confidence in forensic conclusions.