Researcher Luis G. Vieira from Universidade do Minho, Braga, Portugal, has introduced an innovative method to address the contact issues in quantitative attenuated total reflection (ATR) spectroscopy when dealing with flat samples. His novel approach, outlined in the recent issue of Applied Spectroscopy, offers a robust solution to situations where achieving perfect contact conditions is uncertain or unattainable.
Abstract orange particles of optical fiber 3d illustration | Image Credit: © flashmovie - stock.adobe.com
The study focuses on the critical problem of poor contact between the sample and the internal reflection element (IRE), a challenge that can significantly impact the accuracy of optical function determination in ATR spectroscopy. Traditionally, discrepancies arising from imperfect contact conditions could lead to substantial errors in the interpretation of results.
Vieira proposes a method that treats the spacing between the IRE and the sample as an adjustable parameter during the simultaneous fitting of s- and p-polarized spectra. This novel approach introduces flexibility into the analysis, allowing the adjustment of the gap distance alongside dispersion model parameters. The goal is to accurately determine optical functions even when faced with uncertainties related to the contact between the sample and the IRE.
The effectiveness of the method was validated through experimental tests on a solid polystyrene slab, a common material in ATR spectroscopy. By conducting experiments on both synthetic and polystyrene spectra, Vieira showcased the method's capability to overcome contact issues and precisely determine optical functions.
The results of the study emphasize the importance of considering the gap distance between the IRE and the sample in ATR measurements. Neglecting this factor can lead to substantial errors in determining optical functions, especially in situations where the contact conditions are not ideal.
The proposed method provides a much-needed solution for spectroscopists dealing with flat samples made of homogeneous and isotropic materials. It ensures accurate results, irrespective of uncertainties in achieving perfect contact during experiments. The ability to treat the gap distance as an adjustable parameter enhances the reliability and robustness of ATR spectroscopy, offering researchers a newfound confidence in their analyses.
This research not only advances the methodology of ATR spectroscopy but also opens up possibilities for more accurate and reliable analyses of various materials. As the analytical community strives for precision and reproducibility in experimental techniques, this innovative approach takes a step forward in overcoming longstanding challenges associated with contact issues in ATR spectroscopy.
This article was written with the help of artificial intelligence and has been edited to ensure accuracy and clarity. You can read more about our policy for using AI here.
(1) Vieira, L. G. Overcoming the Contact Problem in Quantitative Attenuated Total Reflection Spectroscopy Analysis of Flat Samples. Appl. Spectrosc. 2023, 77 (11), 1221–1227. DOI: 10.1177/00037028231199115
New Study Explores Micro-Raman and FT-IR Analysis of Early Human Tools
June 16th 2025Researchers from Ca’ Foscari University of Venice and the University of Padua have uncovered the earliest direct evidence of Upper Palaeolithic humans deliberately processing the non-edible plant Isatis tinctoria, revealing complex behaviors involving medicinal or dye-related plant use over 32,000 years ago.
Short Tutorial: Complex-Valued Chemometrics for Composition Analysis
June 16th 2025In this tutorial, Thomas G. Mayerhöfer and Jürgen Popp introduce complex-valued chemometrics as a more physically grounded alternative to traditional intensity-based spectroscopy measurement methods. By incorporating both the real and imaginary parts of the complex refractive index of a sample, this approach preserves phase information and improves linearity with sample analyte concentration. The result is more robust and interpretable multivariate models, especially in systems affected by nonlinear effects or strong solvent and analyte interactions.
Bruce R. Kowalski: The Maverick Mind Behind Chemometrics
June 2nd 2025In this Icons of Spectroscopy article, Executive Editor Jerome Workman Jr. delves into the life and impact of Bruce Kowalski, an analytical chemist whose major contributions to chemometrics helped establish the field of applying advanced quantitative and qualitative mathematics to extract meaningful chemical information from complex datasets. Kowalski’s visionary approach to chemical data analysis, education, and software development has transformed the landscape of modern analytical chemistry for academia and industry.