A recent study published in Applied Spectroscopy presents a new approach to biomedical diagnosis through the surface-enhanced Raman spectroscopy (SERS)-based detection of micro-RNA (miRNA) biomarkers using a comparative study of interpretable machine learning (ML) algorithms (1). Led by Joy Q. Li of Duke University, the research team conducted more SERS research by introducing a multiplexed SERS-based nanosensor, named the inverse molecular sentinel (iMS) for miRNA detection. As machine learning (ML) increasingly becomes a vital tool in spectral analysis, the researchers grappled with the high dimensionality of SERS data, a challenge for traditional ML techniques prone to overfitting and poor generalization (1).
Messenger RNA or mRNA strand 3D rendering illustration with copy space. Genetics, science, medical research, genome replication concepts. | Image Credit: © Matthieu - stock.adobe.com
The team explored the performance of ML methods, including convolutional neural network (CNN), support vector regression, and extreme gradient boosting, both with and without non-negative matrix factorization (NMF) for spectral unmixing of four-way multiplexed SERS spectra from iMS assays (1). Remarkably, CNN stands out for achieving high accuracy in spectral unmixing. However, the incorporation of NMF before CNN proves revolutionary, drastically reducing memory and training demands without compromising model performance on SERS spectral unmixing (1).
The study also used these ML models to analyze clinical SERS data from single-plexed iMS in RNA extracted from 17 endoscopic tissue biopsies. CNN and CNN-NMF, trained on multiplexed data, emerged as the top performers, demonstrating high accuracy in spectral unmixing (1).
To enhance transparency and understanding, the researchers employed gradient class activation maps and partial dependency plots to interpret the predictions. This approach not only showcases the potential of CNN-based ML in spectral unmixing of multiplexed SERS spectra, but it also underscores the significant impact of dimensionality reduction on performance and training speed (1).
This research highlights the intersection of spectroscopy and machine learning, providing new opportunities for precise and efficient diagnostics that could enhance biomedical applications and improve patient outcomes.
This article was written with the help of artificial intelligence and has been edited to ensure accuracy and clarity. You can read more about our policy for using AI here.
(1) Li, J. Q., Neng-Wang, H., Canning, A. J., et al. Surface-Enhanced Raman Spectroscopy-Based Detection of Micro-RNA Biomarkers for Biomedical Diagnosis Using a Comparative Study of Interpretable Machine Learning Algorithms. Appl. Spectrosc. 2023, ASAP. DOI: 10.1177/0037028231209053
Tip-enhanced Raman Scattering using a Chemically-modified Tip
June 9th 2025In this tutorial article, Yukihiro Ozaki explores the recent advancements and broadening applications of tip-enhanced Raman scattering (TERS), a cutting-edge technique that integrates scanning probe microscopy (SPM) with surface-enhanced Raman scattering (SERS). TERS enables highly localized chemical analysis at the nano- to subnano-scale, achieving spatial resolution well beyond the diffraction limit of light. Ozaki highlights the versatility of TERS in various experimental environments—ranging from ambient air to ultrahigh vacuum and electrochemical systems—and its powerful utility in fields such as single-molecule detection, biomolecular mechanism studies, nanomaterial characterization, and high-resolution imaging.
Machine Learning Accelerates Clinical Progress of SERS Technology
May 22nd 2025A new review in TrAC Trends in Analytical Chemistry by Alfred Chin Yen Tay and Liang Wang highlights how machine learning (ML) is transforming surface-enhanced Raman spectroscopy (SERS) into a powerful, clinically viable tool for rapid and accurate medical diagnostics.
New SERS Platform Enhances Real-Time Detection of Cardiovascular Drugs in Blood
May 13th 2025Researchers at Harbin Medical University recently developed a SERS-based diagnostic platform that uses DNA-driven “molecular hooks” and AI analysis to enable real-time detection of cardiovascular drugs in blood while eliminating interference from larger biomolecules.
The Rise of Smart Skin Using AI-Powered SERS Wearable Sensors for Real-Time Health Monitoring
May 5th 2025A new comprehensive review explores how wearable plasmonic sensors using surface-enhanced Raman spectroscopy (SERS) are changing the landscape for non-invasive health monitoring. By combining nanotechnology, AI, and real-time spectroscopy analysis to detect critical biomarkers in human sweat, this integration of nanomaterials, flexible electronics, and AI is changing how we monitor health and disease in real-time.
AI-Powered SERS Spectroscopy Breakthrough Boosts Safety of Medicinal Food Products
April 16th 2025A new deep learning-enhanced spectroscopic platform—SERSome—developed by researchers in China and Finland, identifies medicinal and edible homologs (MEHs) with 98% accuracy. This innovation could revolutionize safety and quality control in the growing MEH market.