Infrared reflection absorption spectroscopy (IRRAS) is widely employed for analyzing molecules on surfaces, especially water, with applications in atmospheric chemistry and food science. However, concerns exist about its surface-specificity, particularly when examining soluble surfactants in aqueous solutions.
Alexandra Deal, who currently works at Lawrence Berkeley National Laboratory, explored the surface-specificity of IRRAS in soluble organic acids beneath monolayers of insoluble surfactants while she was a graduate research assistant at the University of Colorado, Boulder. She published her findings in Applied Spectroscopy (1). Spectroscopy spoke with Deal to learn more about her research and IRRAS as a technique.
Alexandra Deal of Lawrence Berkeley National Laboratory | Photo Credit: © Alexandra Deal
In this video interview, Deal responds to the following questions:
To view our other video content, click on this link here: https://www.spectroscopyonline.com/topic/spectroscopy-interviews
(1) Deal, A. M. Infrared Reflection Absorption Spectroscopy (IRRAS) of Water-Soluble Surfactants: Is it Surface-Specific? Appl. Spectrosc. 2023, ASAP. DOI: 10.1177/00037028231200903
Artificial Intelligence Accelerates Molecular Vibration Analysis, Study Finds
July 1st 2025A new review led by researchers from MIT and Oak Ridge National Laboratory outlines how artificial intelligence (AI) is transforming the study of molecular vibrations and phonons, making spectroscopic analysis faster, more accurate, and more accessible.
Toward a Generalizable Model of Diffuse Reflectance in Particulate Systems
June 30th 2025This tutorial examines the modeling of diffuse reflectance (DR) in complex particulate samples, such as powders and granular solids. Traditional theoretical frameworks like empirical absorbance, Kubelka-Munk, radiative transfer theory (RTT), and the Hapke model are presented in standard and matrix notation where applicable. Their advantages and limitations are highlighted, particularly for heterogeneous particle size distributions and real-world variations in the optical properties of particulate samples. Hybrid and emerging computational strategies, including Monte Carlo methods, full-wave numerical solvers, and machine learning (ML) models, are evaluated for their potential to produce more generalizable prediction models.
Polystyrene and UVC Sterilization Tested with Spectroscopy and Luminescence Tools
June 25th 2025A team of researchers from Spanish institutions has found that polystyrene used in healthcare packaging shows strong resistance to UVC sterilization, with minimal chemical degradation detected using FT-IR and Raman spectroscopy.